Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 15(9): 1224-1228, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37264105

ABSTRACT

The H2-H2 molecular dimer is of fundamental importance in the study of chemical interactions because of its unique bonding properties and its ability to model more complex systems. The trihydrogen cation H3+ is also a key intermediate in a range of chemical processes in interstellar environments, such as the formation of various organic molecules and early stars. However, the unexpected high abundance of H3+ in molecular clouds remains challenging to explain. Here using near-infrared, femtosecond laser pulses and coincidence momentum imaging, we find that the dominant channel after photoionization of a deuterium molecular dimer (D2-D2) is the ejection of a deuterium atom within a few hundred femtoseconds, leading to the formation of D3+. The formation mechanism is supported and well-reproduced by ab initio molecular dynamics simulations. This pathway of D3+ formation from ultracold D2-D2 gas may provide insights into the high abundance of H3+ in the interstellar medium.

2.
Phys Rev Lett ; 125(17): 173201, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156666

ABSTRACT

Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...