Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33627397

ABSTRACT

Human coronaviruses (HCoV) are respiratory pathogens which have been known since the 1960's. In December 2019, a new betacoronavirus, SARS-CoV-2, was reported and is responsible for one of the biggest pandemics of the last two centuries. Similar to the HCoV-OC43 strain, available evidence suggests SARS-CoV-2 neuroinvasion associated with potential neurological disorders. Coronavirus infection of the central nervous system (CNS) is largely controlled by a viral factor, the spike glycoprotein (S) and a host factor, innate immunity. However, the interaction between these two factors remains elusive. Proteolytic cleavage of the S protein can occur at the interface between receptor binding (S1) and fusion (S2) domains (S1/S2), as well as in a position adjacent to a fusion peptide within S2 (S2'). Herein, using HCoV-OC43 as a surrogate for SARS-CoV-2, we report that both S protein sites are involved in neurovirulence and are required for optimal CNS infection. Whereas efficient cleavage at S1/S2 is associated with decreased virulence, the potentially cleavable putative S2' site is essential for efficient viral infection. Furthermore, type 1 interferon (IFN 1)-related innate immunity also plays an important role in the control of viral spread towards the spinal cord, by preventing infection of ependymal cells. Our results underline the link between the differential S cleavage and IFN 1 in the prevention of viral spread, to control the severity of infection and pathology in both immunocompetent and immunodeficient mice. Taken together, these results point towards two potential therapeutic anti-viral targets: cleavage of the S protein in conjunction with efficient IFN 1-related innate immunity to prevent or at least reduce neuroinvasion, neural spread, and potential associated neurovirulence of human coronaviruses.ImportanceHuman coronaviruses (HCoV) are recognized respiratory pathogens. The emergence of the novel pathogenic member of this family in December 2019 (SARS-CoV-2, which causes COVID-19) poses a global health emergency. As with other coronaviruses reported previously, invasion of the human central nervous system (CNS), associated with diverse neurological disorders, was suggested for SARS-CoV-2. Herein, using the related HCoV-OC43 strain, we show that the viral spike protein constitutes a major neurovirulence factor and that type 1 interferon (IFN 1), in conjunction with cleavage of S protein by host proteases, represent important host factors that participate in the control of CNS infection.To our knowledge, this is the first demonstration of a direct link between cleavage of the S protein, innate immunity and neurovirulence. Understanding mechanisms of viral infection and spread in neuronal cells is essential to better design therapeutic strategies, and to prevent infection by human coronaviruses such as SARS-CoV-2 in human CNS especially in the vulnerable populations such as the elderly and immune-compromised individuals.

2.
Viruses ; 12(1)2019 12 20.
Article in English | MEDLINE | ID: mdl-31861926

ABSTRACT

Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.


Subject(s)
Central Nervous System/virology , Coronavirus Infections/virology , Coronavirus/physiology , Coronavirus/pathogenicity , Respiratory Tract Infections/virology , Animals , Central Nervous System Viral Diseases/complications , Central Nervous System Viral Diseases/virology , Coronavirus Infections/complications , Encephalitis, Viral/complications , Encephalitis, Viral/virology , Humans , Nervous System Diseases/complications , Nervous System Diseases/virology , Respiratory Tract Infections/complications , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...