Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 36(1): 61-73, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29916303

ABSTRACT

A number of pre-clinical rodent models have been developed in an effort to recapitulate injury mechanisms and identify potential therapeutics for traumatic brain injury (TBI), which is a major cause of death and long-term disability in the United States. The lack of restorative treatments for TBI, however, has led to considerable criticism of current pre-clinical therapeutic development strategies-namely, the translatability of widely used rodent models to human patients. The use of large animal models, such as the pig, with more brain anatomy and physiology comparable to humans may enhance the translational capacity of current pre-clinical animal models. The objective of this study was to develop and characterize a graded piglet TBI model with quantitative pathological features at the cellular, tissue, and functional level that become more prominent with increasing TBI severity. A graded TBI was produced by controlled cortical impact (CCI) in "toddler-aged" Landrace piglets by increasing impact velocity and/or depth of depression to 2 m/sec; 6 mm; 4 m/sec; 6 mm; 4 m/sec; 12 mm; or 4 m/sec; 15 mm, producing a range of neural injury responses that corresponded to injury severity. Quantitative gait analysis was performed pre-TBI and one, three, and seven days post-TBI, and piglets were sacrificed seven days post-TBI. Increasing impact parameters correlated to increases in lesion size with piglets that sustained a 6 mm depth of depression exhibiting significantly smaller lesions than piglets that sustained a depth of depression of 12 mm or 15 mm. Similarly, the extent of neuronal loss, astrogliosis/astrocytosis, and white matter damage became more prominent as CCI parameters were increased. These cellular and tissue-level changes correlated with motor function deficits including swing/stance time, stride velocity, and two- versus three-limb support. The piglet TBI model described here could serve as a translational platform for studying TBI sequelae across injury severities and identifying novel therapeutics.


Subject(s)
Brain Injuries, Traumatic/pathology , Disease Models, Animal , Animals , Swine
2.
Sci Rep ; 7(1): 10075, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855627

ABSTRACT

Induced pluripotent stem cell-derived neural stem cells (iNSCs) have significant potential as an autologous, multifunctional cell therapy for stroke, which is the primary cause of long term disability in the United States and the second leading cause of death worldwide. Here we show that iNSC transplantation improves recovery through neuroprotective, regenerative, and cell replacement mechanisms in a novel ischemic pig stroke model. Longitudinal multiparametric magnetic resonance imaging (MRI) following iNSC therapy demonstrated reduced changes in white matter integrity, cerebral blood perfusion, and brain metabolism in the infarcted tissue. The observed tissue level recovery strongly correlated with decreased immune response, enhanced neuronal protection, and increased neurogenesis. iNSCs differentiated into neurons and oligodendrocytes with indication of long term integration. The robust recovery response to iNSC therapy in a translational pig stroke model with increased predictive potential strongly supports that iNSCs may be the critically needed therapeutic for human stroke patients.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Infarction, Middle Cerebral Artery/therapy , Stem Cell Transplantation/methods , Stroke/therapy , Animals , Biomarkers/metabolism , Cell Differentiation , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Gene Expression , Humans , Induced Pluripotent Stem Cells/physiology , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Magnetic Resonance Imaging/methods , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Neurons/metabolism , Neurons/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Stroke/diagnostic imaging , Stroke/genetics , Stroke/pathology , Swine , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/pathology
3.
Exp Transl Stroke Med ; 6(1): 5, 2014 Mar 23.
Article in English | MEDLINE | ID: mdl-24655785

ABSTRACT

BACKGROUND: Efforts to develop stroke treatments have met with limited success despite an intense need to produce novel treatments. The failed translation of many of these therapies in clinical trials has lead to a close examination of the therapeutic development process. One of the major factors believed to be limiting effective screening of these treatments is the absence of an animal model more predictive of human responses to treatments. The pig may potentially fill this gap with a gyrencephalic brain that is larger in size with a more similar gray-white matter composition to humans than traditional stroke animal models. In this study we develop and characterize a novel pig middle cerebral artery occlusion (MCAO) ischemic stroke model. METHODS: Eleven male pigs underwent MCAO surgery with the first 4 landrace pigs utilized to optimize stroke procedure and 7 additional Yucatan stroked pigs studied over a 90 day period. MRI analysis was done at 24 hrs and 90 days and included T2w, T2w FLAIR, T1w FLAIR and DWI sequences and associated ADC maps. Pigs were sacrificed at 90 days and underwent gross and microscopic histological evaluation. Significance in quantitative changes was determined by two-way analysis of variance and post-hoc Tukey's Pair-Wise comparisons. RESULTS: MRI analysis of animals that underwent MCAO surgery at 24 hrs had hyperintense regions in T2w and DWI images with corresponding ADC maps having hypointense regions indicating cytotoxic edema consistent with an ischemic stroke. At 90 days, region of interest analysis of T1 FLAIR and ADC maps had an average lesion size of 59.17 cc, a loss of 8% brain matter. Histological examination of pig brains showed atrophy and loss of tissue, consistent with MRI, as well as glial scar formation and macrophage infiltration. CONCLUSIONS: The MCAO procedure led to significant and consistent strokes with high survivability. These results suggest that the pig model is potentially a robust system for the study of stroke pathophysiology and potential diagnostics and therapeutics.

4.
Physiol Behav ; 125: 8-16, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24286894

ABSTRACT

Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.


Subject(s)
Brain Ischemia/physiopathology , Disease Models, Animal , Gait Disorders, Neurologic/physiopathology , Gait/physiology , Stroke/physiopathology , Swine/physiology , Animals , Brain Ischemia/complications , Functional Laterality , Gait Disorders, Neurologic/complications , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...