Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(5-1): 052213, 2021 May.
Article in English | MEDLINE | ID: mdl-34134210

ABSTRACT

The study of nonlinear oscillator chains in classical many-body dynamics has a storied history going back to the seminal work of Fermi et al. [Los Alamos Scientific Laboratory Report No. LA-1940, 1955 (unpublished)]. We introduce a family of such systems which consist of chains of N harmonically coupled particles with the nonlinearity introduced by confining the motion of each individual particle to a box or stadium with hard walls. The stadia are arranged on a one-dimensional lattice but they individually do not have to be one dimensional, thus permitting the introduction of chaos already at the lattice scale. For the most part we study the case where the motion is entirely one dimensional. We find that the system exhibits a mixed phase space for any finite value of N. Computations of Lyapunov spectra at randomly picked phase space locations and a direct comparison between Hamiltonian evolution and phase space averages indicate that the regular regions of phase space are not significant at large system sizes. While the continuum limit of our model is itself a singular limit of the integrable sinh Gordon theory, we do not see any evidence for the kind of nonergodicity famously seen in the work of Fermi et al. Finally, we examine the chain with particles confined to two-dimensional stadia where the individual stadium is already chaotic and find a much more chaotic phase space at small system sizes.

2.
Article in English | MEDLINE | ID: mdl-25353553

ABSTRACT

We address the time decay of the Loschmidt echo, measuring the sensitivity of quantum dynamics to small Hamiltonian perturbations, in one-dimensional integrable systems. Using a semiclassical analysis, we show that the Loschmidt echo may exhibit a well-pronounced regime of exponential decay, similar to the one typically observed in quantum systems whose dynamics is chaotic in the classical limit. We derive an explicit formula for the exponential decay rate in terms of the spectral properties of the unperturbed and perturbed Hamilton operators and the initial state. In particular, we show that the decay rate, unlike in the case of the chaotic dynamics, is directly proportional to the strength of the Hamiltonian perturbation. Finally, we compare our analytical predictions against the results of a numerical computation of the Loschmidt echo for a quantum particle moving inside a one-dimensional box with Dirichlet-Robin boundary conditions, and find the two in good agreement.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036205, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22587159

ABSTRACT

Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...