Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
Planta ; 260(1): 8, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789631

ABSTRACT

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Subject(s)
Avena , Gene Expression Profiling , Metabolome , Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Avena/microbiology , Avena/genetics , Avena/metabolism , Metabolome/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Phytochemicals/metabolism , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Regulation, Plant , Disease Resistance/genetics , Host-Pathogen Interactions , Transcriptome , ortho-Aminobenzoates/metabolism
2.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38316926

ABSTRACT

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Humans , Metabolomics/methods , Databases, Factual
3.
Metabolites ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38393004

ABSTRACT

Specialized metabolites are produced via discrete metabolic pathways. These small molecules play significant roles in plant growth and development, as well as defense against environmental stresses. These include damping off or seedling blight at a post-emergence stage. Targeted metabolomics was followed to gain insights into metabolome changes characteristic of different developmental stages of sorghum seedlings. Metabolites were extracted from leaves at seven time points post-germination and analyzed using ultra-high performance liquid chromatography coupled to mass spectrometry. Multivariate statistical analysis combined with chemometric tools, such as principal component analysis, hierarchical clustering analysis, and orthogonal partial least squares-discriminant analysis, were applied for data exploration and to reduce data dimensionality as well as for the selection of potential discriminant biomarkers. Changes in metabolome patterns of the seedlings were analyzed in the early, middle, and late stages of growth (7, 14, and 29 days post-germination). The metabolite classes were amino acids, organic acids, lipids, cyanogenic glycosides, hormones, hydroxycinnamic acid derivatives, and flavonoids, with the latter representing the largest class of metabolites. In general, the metabolite content showed an increase with the progression of the plant growth stages. Most of the differential metabolites were derived from tryptophan and phenylalanine, which contribute to innate immune defenses as well as growth. Quantitative analysis identified a correlation of apigenin flavone derivatives with growth stage. Data-driven investigations of these metabolomes provided new insights into the developmental dynamics that occur in seedlings to limit post-germination mortality.

4.
Metabolites ; 13(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37755277

ABSTRACT

Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar ('Hessekwa') at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and 'shared and unique structures' (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt.

5.
Front Mol Biosci ; 10: 1232233, 2023.
Article in English | MEDLINE | ID: mdl-37635940

ABSTRACT

Ralstonia solanacearum, one of the most destructive crop pathogens worldwide, causes bacterial wilt disease in a wide range of host plants. The major component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has been shown to function as elicitors of plant defense leading to the activation of signaling and defense pathways in several plant species. LPS from a R. solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically characterized, and structurally elucidated. The lipid A moiety consisted of tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also decorated by aminoarabinose residues in minor species, while the O-polysaccharide chain consisted of either linear tetrasaccharide or branched pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-ß-D-glucosamine, and ß-L-xylose. These properties might be associated with the evasion of host surveillance, aiding the establishment of the infection. Using untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome of Solanum lycopersicum leaves was investigated across three incubation time intervals with the application of UHPLC-MS for metabolic profiling. The results revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as phytochemicals that exhibit a positive correlation to LPSR. sol. treatment. Although the chemical properties of these metabolite classes have been studied, the functional roles of these compounds have not been fully elucidated. Overall, the results suggest that the features of the LPSR. sol. chemotype aid in limiting or attenuating the full deployment of small molecular host defenses and contribute to the understanding of the perturbation and reprogramming of host metabolism during biotic immune responses.

6.
Res Sq ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577622

ABSTRACT

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

7.
BMC Plant Biol ; 23(1): 293, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264330

ABSTRACT

BACKGROUND: Puccinia striiformis f. sp. tritici (Pst) is an economically devasting disease that is prominent in cereal crops such as wheat (Triticum aestivum). The fungal pathogen can cause approximately 30-70% losses in crop productivity and yields. Pst has become difficult to manage due to its ease of transmission through wind dispersal over long distances, and intercontinental dispersal has been previously reported. The ease of transmission has resulted in further destruction because of new and more virulent strains infecting crops previously resistant to a different strain. RESULTS: In this study, a liquid chromatography-mass spectrometry-based untargeted metabolomics approach, in combination with multivariate data analytical tools, was used to elucidate the mechanistic nature of the defence systems of a Pst-resistant and a susceptible wheat cultivar infected with P. striiformis. We also investigated the time-dependant metabolic reconfiguration of infected plants over a four-week period. The untargeted metabolomic analysis revealed a time-course metabolic reprogramming involving phenylpropanoids (majority flavonoids), amino acids, lipids, benzoic acids, TCA cycle intermediates and benzoxazinoids responding to Pst infection. Interestingly, the results do not show a linear course for the decrease and increase (up-/down-regulation) of said classes of metabolites, but rather the up- or down-regulation of specific metabolites in response to the pathogen infection. The resistant Koonap cultivar had an abundance of phenolic compounds such as rutin, isoorintin-7-O-glucoside and luteolin-6-C-hexoside-O-hexoside. These compounds showed a decrease over time in control Koonap plants compared to an increase in Pst-infected plants. These metabolites were down-regulated in the susceptible Gariep cultivar, which could serve as biomarkers for plant responses to biotic stress and resistance against Pst. CONCLUSIONS: Overall, an LC-MS-based metabolomics approach allowed for the metabolic profiling and analysis of the impact of plant-pathogen interactions on the overall plant metabolome and provided a real-time snapshot of the differential significant metabolic perturbations occurring in wheat plants responding to the Pst pathogen. The Pst-resistant Koonap cultivar showed a rapid accumulation of defence metabolites in response to pathogen infection compared to the susceptible Gariep cultivar. These findings provide insight into the mechanistic biochemical nature of plant-microbe interactions and the prospects of metabolic engineering for improved plant tolerance and resistance to biotic stresses.


Subject(s)
Basidiomycota , Triticum , Triticum/metabolism , Basidiomycota/physiology , Puccinia , Plant Diseases/microbiology
8.
Front Plant Sci ; 14: 1103413, 2023.
Article in English | MEDLINE | ID: mdl-37123830

ABSTRACT

Plant-microbe interactions are a phenomenal display of symbiotic/parasitic relationships between living organisms. Plant growth-promoting rhizobacteria (PGPR) are some of the most widely investigated plant-beneficial microbes due to their capabilities in stimulating plant growth and development and conferring protection to plants against biotic and abiotic stresses. As such, PGPR-mediated plant priming/induced systemic resistance (ISR) has become a hot topic among researchers, particularly with prospects of applications in sustainable agriculture. The current study applies untargeted ultra-high performance liquid chromatography-high-definition mass spectrometry (UHPLC-HDMS) to investigate PGPR-based metabolic reconfigurations in the metabolome of primed wheat plants against Puccinia striiformis f. sp. tricti (Pst). A seed bio-priming approach was adopted, where seeds were coated with two PGPR strains namely Bacillus subtilis and Paenibacillus alvei (T22) and grown under controlled conditions in a glasshouse. The plants were infected with Pst one-week post-germination, followed by weekly harvesting of leaf material. Subsequent metabolite extraction was carried out for analysis on a UHPLC-HDMS system for data acquisition. The data was chemometrically processed to reveal the underlying trends and data structures as well as potential signatory biomarkers for priming against Pst. Results showed notable metabolic reprogramming in primary and secondary metabolism, where the amino acid and organic acid content of primed-control, primed-challenged and non-primed-challenged plants were differentially reprogrammed. Similar trends were observed from the secondary metabolism, in which primed plants (particularly primed-challenged) showed an up-regulation of phenolic compounds (flavonoids, hydroxycinnamic acids-HCAs- and HCA amides) compared to the non-primed plants. The metabolomics-based semi-quantitative and qualitative assessment of the plant metabolomes revealed a time-dependent metabolic reprogramming in primed-challenged and primed-unchallenged plants, indicating the metabolic adaptations of the plants to stripe rust infection over time.

9.
Metabolites ; 13(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37233707

ABSTRACT

Designing innovative biological crop protection strategies to stimulate natural plant immunity is motivated by the growing need for eco-friendly alternatives to conventional biocidal agrochemicals. Salicylic acid (SA) and analogues are known chemical inducers of priming plant immunity against environmental stresses. The aim of the study was to study the metabolic reprogramming in barley plants following an application of three proposed dichlorinated inducers of acquired resistance. 3,5-Dichloroanthranilic acid, 2,6-dichloropyridine-4-carboxylic acid, and 3,5-dichlorosalicylic acid were applied to barley at the third leaf stage of development and harvested at 12, 24, and 36 h post-treatment. Metabolites were extracted using methanol for untargeted metabolomics analyses. Samples were analysed by ultra-high performance liquid chromatography coupled to high-definition mass spectrometry (UHPLC-HDMS). Chemometric methods and bioinformatics tools were used to mine and interpret the generated data. Alterations in the levels of both primary and secondary metabolites were observed. The accumulation of barley-specific metabolites, hordatines, and precursors was observed from 24 h post-treatment. The phenylpropanoid pathway, a marker of induced resistance, was identified among the key mechanisms activated by the treatment with the three inducers. No salicylic acid or SA derivatives were annotated as signatory biomarkers; instead, jasmonic acid precursors and derivatives were found as discriminatory metabolites across treatments. The study highlights differences and similarities in the metabolomes of barley after treatment with the three inducers and points to the triggering chemical changes associated with defence and resistance. This report is the first of its kind, and the knowledge acquired provides deeper insight into the role of dichlorinated small molecules as inducers of plant immunity and can be used in metabolomics-guided plant improvement programmes.

10.
Plants (Basel) ; 12(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36987077

ABSTRACT

Avenanthramides are a group of N-cinnamoylanthranilic acids (phenolic alkaloid compounds) that are produced in oat plants as phytoalexins, in response to pathogen attack and elicitation. The enzyme catalysing the cinnamamide-generating reaction is hydroxycinnamoyl-CoA: hydroxyanthranilate N-hydroxycinnamoyltransferase (HHT, a member of the super family of BAHD acyltransferases). HHT from oat appears to have a narrow range of substrate usage, with preferred use of 5-hydroxyanthranilic acid (and to a lesser extent, other hydroxylated and methoxylated derivatives) as acceptor molecules, but is able to use both substituted cinnamoyl-CoA and avenalumoyl-CoA thioesters as donor molecules. Avenanthramides thus combine carbon skeletons from both the stress-inducible shikimic acid and phenylpropanoid pathways. These features contribute to the chemical characteristics of avenanthramides as multifunctional plant defence compounds, as antimicrobial agents and anti-oxidants. Although avenanthramides are naturally and uniquely synthesised in oat plants, these molecules also exhibit medicinal and pharmaceutical uses important for human health, prompting research into utilisation of biotechnology to enhance agriculture and value-added production.

11.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903995

ABSTRACT

Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and metabolomic studies of various INAP-treated plant systems have provided substantial insight into this compound's defence-inducing and priming capabilities. To complement previous 'omics' work in this regard, a proteomic approach of time-dependent responses to INAP was followed. As such, Nicotiana tabacum (N. tabacum) cell suspensions were induced with INAP and changes monitored over a 24-h period. Protein isolation and proteome analysis at 0, 8, 16 and 24 h post-treatment were performed using two-dimensional electrophoresis followed by the gel-free eight-plex isobaric tags for relative and absolute quantitation (iTRAQ) based on liquid chromatography and mass spectrometry. Of the identified differentially abundant proteins, 125 were determined to be significant and further investigated. INAP treatment elicited changes to the proteome that affected proteins from a wide range of functional categories: defence, biosynthesis, transport, DNA and transcription, metabolism and energy, translation and signalling and response regulation. The possible roles of the differentially synthesised proteins in these functional classes are discussed. Results indicate up-regulated defence-related activity within the investigated time period, further highlighting a role for proteomic changes in priming as induced by INAP treatment.

12.
Plants (Basel) ; 11(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297773

ABSTRACT

Essential oils are vital constituents of oil-bearing plants. However, their screening still demands harvesting of the plant for laboratory analysis. We report herein a simple, rapid and robust headspace bubble-in-drop microextraction screening technique (BID-SPME) requiring only small amounts of plant material. The optimised method uses 0.5 g of the crushed plant leaves sample obtained in a 2 mL capped chromatography vial, heated to 55 °C and sampled with 2 µL heptadecane in a Hamilton gastight syringe equilibrated for 15 min exposed to the headspace volume. The method was applied to three plants, Pinus radiata, Tagetes minuta and Artemisia afra, which are known for their essential oil content. The method was able to extract at least 80% of the oil constituents in such abundance that they could be easily annotated using the gas chromatography-mass spectrometry (GC-MS) mass spectral libraries. The major volatile organic compounds (VOCs) detected included tagetone, terpinen-4-ol, ocimenone, caryophyllene, dihydrotagetone, terpinolene and artemisia ketone, just to mention a few, at different concentrations in different plants. Importantly, these annotated VOCs were also reported in other studies in the same and even different plants, extracted using normal steam distillation and importantly those reported in the literature for different extraction techniques.

13.
Front Microbiol ; 13: 971836, 2022.
Article in English | MEDLINE | ID: mdl-36090115

ABSTRACT

The rhizosphere is a highly complex and biochemically diverse environment that facilitates plant-microbe and microbe-microbe interactions, and this region is found between plant roots and the bulk soil. Several studies have reported plant root exudation and metabolite secretion by rhizosphere-inhabiting microbes, suggesting that these metabolites play a vital role in plant-microbe interactions. However, the biochemical constellation of the rhizosphere soil is yet to be fully elucidated and thus remains extremely elusive. In this regard, the effects of plant growth-promoting rhizobacteria (PGPR)-plant interactions on the rhizosphere chemistry and above ground tissues are not fully understood. The current study applies an untargeted metabolomics approach to profile the rhizosphere exo-metabolome of wheat cultivars generated from seed inoculated (bio-primed) with Paenibacillus (T22) and Bacillus subtilis strains and to elucidate the effects of PGPR treatment on the metabolism of above-ground tissues. Chemometrics and molecular networking tools were used to process, mine and interpret the acquired mass spectrometry (MS) data. Global metabolome profiling of the rhizosphere soil of PGPR-bio-primed plants revealed differential accumulation of compounds from several classes of metabolites including phenylpropanoids, organic acids, lipids, organoheterocyclic compounds, and benzenoids. Of these, some have been reported to function in plant-microbe interactions, chemotaxis, biocontrol, and plant growth promotion. Metabolic perturbations associated with the primary and secondary metabolism were observed from the profiled leaf tissue of PGPR-bio-primed plants, suggesting a distal metabolic reprograming induced by PGPR seed bio-priming. These observations gave insights into the hypothetical framework which suggests that PGPR seed bio-priming can induce metabolic changes in plants leading to induced systemic response for adaptation to biotic and abiotic stress. Thus, this study contributes knowledge to ongoing efforts to decipher the rhizosphere metabolome and mechanistic nature of biochemical plant-microbe interactions, which could lead to metabolome engineering strategies for improved plant growth, priming for defense and sustainable agriculture.

14.
Metabolites ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36005635

ABSTRACT

The rhizosphere microbiome is a major determinant of plant health. Plant-beneficial or plant growth-promoting rhizobacteria (PGPR) influence plant growth, plant development and adaptive responses, such as induced resistance/priming. These new eco-friendly choices have highlighted volatile organic compounds (biogenic VOCs) as a potentially inexpensive, effective and efficient substitute for the use of agrochemicals. Secreted bacterial VOCs are low molecular weight lipophilic compounds with a low boiling point and high vapor pressures. As such, they can act as short- or long-distance signals in the rhizosphere, affecting competing microorganisms and impacting plant health. In this study, secreted VOCs from four PGPR strains (Pseudomonas koreensis (N19), Ps. fluorescens (N04), Lysinibacillus sphaericus (T19) and Paenibacillus alvei (T22)) were profiled by solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) combined with a multivariate data analysis. Metabolomic profiling with chemometric analyses revealed novel data on the composition of the secreted VOC blends of the four PGPR strains. Of the 121 annotated metabolites, most are known as bioactives which are able to affect metabolism in plant hosts. These VOCs belong to the following classes: alcohols, aldehydes, ketones, alkanes, alkenes, acids, amines, salicylic acid derivatives, pyrazines, furans, sulfides and terpenoids. The results further demonstrated the presence of species-specific and strain-specific VOCs, characterized by either the absence or presence of specific VOCs in the different strains. These molecules could be further investigated as biomarkers for the classification of an organism as a PGPR and selection for agricultural use.

15.
Membranes (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35736313

ABSTRACT

Plants recognise bacterial microbe-associated molecular patterns (MAMPs) from the environment via plasma membrane (PM)-localised pattern recognition receptor(s) (PRRs). Lipopolysaccharides (LPSs) are known as MAMPs from gram-negative bacteria that are most likely recognised by PRRs and trigger defence responses in plants. The Arabidopsis PRR(s) and/or co-receptor(s) complex for LPS and the associated defence signalling remains elusive. As such, proteomic identification of LPS receptors and/or co-receptor complexes will help to elucidate the molecular mechanisms that underly LPS perception and defence signalling in plants. The Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related-2 (LBR2) have been shown to recognise LPS and trigger defence responses while brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) acts as a co-receptor for several PRRs. In this study, Arabidopsis wild type (WT) and T-DNA knock out mutants (lbr2-2 and bak1-4) were treated with LPS chemotypes from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc) over a 24 h period. The PM-associated protein fractions were separated by liquid chromatography and analysed by tandem mass spectrometry (LC-MS/MS) followed by data analysis using ByonicTM software. Using Gene Ontology (GO) for molecular function and biological processes, significant LPS-responsive proteins were grouped according to defence and stress response, perception and signalling, membrane transport and trafficking, metabolic processes and others. Venn diagrams demarcated the MAMP-responsive proteins that were common and distinct to the WT and mutant lines following treatment with the two LPS chemotypes, suggesting contributions from differential LPS sub-structural moieties and involvement of LBR2 and BAK1 in the LPS-induced MAMP-triggered immunity (MTI). Moreover, the identification of RLKs and RLPs that participate in other bacterial and fungal MAMP signalling proposes the involvement of more than one receptor and/or co-receptor for LPS perception as well as signalling in Arabidopsis defence responses.

16.
Sci Rep ; 12(1): 10450, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729338

ABSTRACT

Microbial-based biostimulants are emerging as effective strategies to improve agricultural productivity; however, the modes of action of such formulations are still largely unknown. Thus, herein we report elucidated metabolic reconfigurations in maize (Zea mays) leaves associated with growth promotion and drought stress tolerance induced by a microbial-based biostimulant, a Bacillus consortium. Morphophysiological measurements revealed that the biostimulant induced a significant increase in biomass and enzymatic regulators of oxidative stress. Furthermore, the targeted metabolomics approach revealed differential quantitative profiles in amino acid-, phytohormone-, flavonoid- and phenolic acid levels in plants treated with the biostimulant under well-watered, mild, and severe drought stress conditions. These metabolic alterations were complemented with gene expression and global DNA methylation profiles. Thus, the postulated framework, describing biostimulant-induced metabolic events in maize plants, provides actionable knowledge necessary for industries and farmers to confidently and innovatively explore, design and fully implement microbial-based formulations and strategies into agronomic practices for sustainable agriculture and food production.


Subject(s)
Droughts , Zea mays , Biomass , Plant Growth Regulators/metabolism , Plant Leaves , Stress, Physiological
17.
Metabolites ; 12(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35629883

ABSTRACT

Plants perceive pathogenic threats from the environment that have evaded preformed barriers through pattern recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). The perception of and triggered defence to lipopolysaccharides (LPSs) as a MAMP is well-studied in mammals, but little is known in plants, including the PRR(s). Understanding LPS-induced secondary metabolites and perturbed metabolic pathways in Arabidopsis will be key to generating disease-resistant plants and improving global plant crop yield. Recently, Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related proteins (LBP/BPI related-1) and (LBP/BPI related-2) were shown to perceive LPS from Pseudomonas aeruginosa and trigger defence responses. In turn, brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) is a well-established co-receptor for several defence-related PRRs in plants. Due to the lack of knowledge pertaining to LPS perception in plants and given the involvement of the afore-mentioned proteins in MAMPs recognition, in this study, Arabidopsis wild type (WT) and mutant (lbr2-2 and bak1-4) plants were pressure-infiltrated with LPSs purified from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc). Metabolites were extracted from the leaves at four time points over a 24 h period and analysed by UHPLC-MS, generating distinct metabolite profiles. Data analysed using unsupervised and supervised multivariate data analysis (MVDA) tools generated results that reflected time- and treatment-related variations after both LPS chemotypes treatments. Forty-five significant metabolites were putatively annotated and belong to the following groups: glucosinolates, hydroxycinnamic acid derivatives, flavonoids, lignans, lipids, oxylipins, arabidopsides and phytohormones, while metabolic pathway analysis (MetPA) showed enrichment of flavone and flavanol biosynthesis, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and glucosinolate biosynthesis. Distinct metabolite accumulations depended on the LPS chemotype and the genetic background of the lbr2-2 and bak1-4 mutants. This study highlights the role of LPSs in the reprogramming Arabidopsis metabolism into a defensive state, and the possible role of LBR and BAK1 proteins in LPSs perception and thus plant defence against pathogenic bacteria.

18.
Metabolites ; 12(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35448497

ABSTRACT

In the process of enhancing crop potential, metabolomics offers a unique opportunity to biochemically describe plant metabolism and to elucidate metabolite profiles that govern specific phenotypic characteristics. In this study we report an untargeted metabolomic profiling of shoots and roots of barley seedlings performed to reveal the chemical makeup therein at an early growth stage. The study was conducted on five cultivars of barley: 'Overture', 'Cristalia', 'Deveron', 'LE7' and 'Genie'. Seedlings were grown for 16 days post germination under identical controlled conditions, and methanolic extracts were analysed on an ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) system. In addition, an unsupervised pattern identification technique, principal component analysis (PCA), was performed to process the generated multidimensional data. Following annotation of specific metabolites, several classes were revealed, among which phenolic acids represented the largest group in extracts from both shoot and root tissues. Interestingly, hordatines, barley-specific metabolites, were not found in the root tissue. In addition, metabolomic profiling revealed metabolites potentially associated with the plants' natural protection system against potential pathogens. The study sheds light on the chemical composition of barley at a young developmental stage and the information gathered could be useful in plant research and biomarker-based breeding programs.

19.
Metabolites ; 12(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35323691

ABSTRACT

The metabolome is the underlying biochemical layer of the phenotype and offers a functional readout of the cellular mechanisms involved in a biological system. Since metabolites are considered end-products of regulatory processes at a cellular level, their levels are considered the definitive response of the biological system to genetic or environmental variations. The metabolome thus serves as a metabolic fingerprint of the biochemical events that occur in a biological system under specific conditions. In this study, an untargeted metabolomics approach was applied to elucidate biochemical processes implicated in oat plant responses to Pseudomonas syringae pv. coronafaciens (Ps-c) infection, and to identify signatory markers related to defence responses and disease resistance against halo blight. Metabolic changes in two oat cultivars ("Dunnart" and "SWK001") responding to Ps-c, were examined at the three-leaf growth stage and metabolome changes monitored over a four-day post-inoculation period. Hydromethanolic extracts were analysed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to a high-definition mass spectrometer (MS) analytical platform. The acquired multi-dimensional data were processed using multivariate statistical analysis and chemometric modelling. The validated chemometric models indicated time- and cultivar-related metabolic changes, defining the host response to the bacterial inoculation. Further multivariate analyses of the data were performed to profile differential signatory markers, putatively associated with the type of launched defence response. These included amino acids, phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins and plant hormones. Based on the results, metabolic alterations involved in oat defence responses to Ps-c were elucidated and key signatory metabolic markers defining the defence metabolome were identified. The study thus contributes toward a more holistic understanding of the oat metabolism under biotic stress.

20.
Biology (Basel) ; 11(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35336720

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms colonising the rhizosphere. PGPR are involved in plant growth promotion and plant priming against biotic and abiotic stresses. Plant-microbe interactions occur through chemical communications in the rhizosphere and a tripartite interaction mechanism between plants, pathogenic microbes and plant-beneficial microbes has been defined. However, comprehensive information on the rhizosphere communications between plants and microbes, the tripartite interactions and the biochemical implications of these interactions on the plant metabolome is minimal and not yet widely available nor well understood. Furthermore, the mechanistic nature of PGPR effects on induced systemic resistance (ISR) and priming in plants at the molecular and metabolic levels is yet to be fully elucidated. As such, research investigating chemical communication in the rhizosphere is currently underway. Over the past decades, metabolomics approaches have been extensively used in describing the detailed metabolome of organisms and have allowed the understanding of metabolic reprogramming in plants due to tripartite interactions. Here, we review communication systems between plants and microorganisms in the rhizosphere that lead to plant growth stimulation and priming/induced resistance and the applications of metabolomics in understanding these complex tripartite interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...