Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898415

ABSTRACT

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Subject(s)
Arachis , Soil Microbiology , Arachis/microbiology , Arachis/genetics , Mycobiome , Fungi/physiology , Fungi/genetics , Florida , Rhizome/microbiology , Phylogeny
2.
Microorganisms ; 11(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138146

ABSTRACT

The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum notatum Flüggé) may require time to develop stable plant-soil microbe interactions as the microbial legacy of the previous plant community may be long-lasting. A previous study showed that <2 years of introducing rhizoma peanut into bahiagrass pastures minimally affected soil bacterial diversity and community composition. In this study, we compared the effects of the long-term inclusion of rhizoma peanut (>8 years) into bahiagrass on soil bacterial diversity and community composition against their monocultures at 0 to 15 and 15 to 30 cm soil depths using next-generation sequencing to target bacterial 16S V3-V4 regions. We observed that a well-established RP-bahiagrass mixed stand led to a 36% increase in bacterial alpha diversity compared to the bahiagrass monoculture. There was a shift from a soil bacterial community dominated by Proteobacteria (~26%) reported in other bahiagrass and rhizoma peanut studies to a soil bacterial community dominated by Firmicutes (39%) in our study. The relative abundance of the bacterial genus Crossiella, known for its antimicrobial traits, was enhanced in the presence of RP. Differences in soil bacterial diversity and community composition were substantial between 0 to 15 and 15 to 30 cm soil layers, with N2-fixing bacteria belonging to the phylum Proteobacteria concentrated in 0 to 15 cm. Introducing RP into bahiagrass pastures is a highly sustainable alternative to mineral N fertilizer inputs. Our results provide evidence that this system also promotes greater soil microbial diversity and is associated with unique taxa that require further study to better understand their contributions to healthy pastures.

3.
Animals (Basel) ; 13(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958108

ABSTRACT

Weed encroachment on grasslands can negatively affect herbage allowance and animal behavior, impacting livestock production. We used low-cost GPS collars fitted to twenty-four Angus crossbred steers to evaluate the effects of different levels of weed encroachment on animal activities and spatial distribution. The experiment was established with a randomized complete block design, with three treatments and four blocks. The treatments were paddocks free of weeds (weed-free), paddocks with weeds established in alternated strips (weed-strips), and paddocks with weeds spread throughout the entire area (weed-infested). Animals in weed-infested paddocks had reduced resting time and increased grazing time, distance traveled, and rate of travel (p < 0.05) compared to animals in weed-free paddocks. The spatial distribution of the animals was consistently greater in weed-free paddocks than in weed-strips or weed-infested areas. The effects of weed encroachment on animal activities were minimized after weed senescence at the end of the growing season. Pasture weed encroachment affected cattle behavior and their spatial distribution across the pasture, potentially impacting animal welfare. Further long-term studies are encouraged to evaluate the impacts of weed encroachment on animal performance and to quantify the effects of behavioral changes on animal energy balance.

4.
PLoS One ; 18(7): e0288738, 2023.
Article in English | MEDLINE | ID: mdl-37467251

ABSTRACT

Grazing livestock in subtropical and tropical regions are susceptible to prolonged exposition to periods of extreme environmental conditions (i.e., temperature and humidity) that can trigger heat stress (HS). Currently, there is limited information on the effects of HS in the cow-calf sector globally, including in the southern U.S., as well as on mitigation strategies that could be implemented to improve animal well-being and performance. This study evaluated the impact of artificial shade (SHADE vs. NO SHADE) and breed (ANGUS vs. BRANGUS) on performance of pregnant-lactating cows, nursing heifers, and their subsequent offspring. Twenty-four Angus and 24 Brangus black-hided cows [579 ± 8 kg body weight (BW); approximately 85 d of gestation] and their nursing heifers (approximately 174 d of age) were randomly allocated to 12 'Pensacola' bahiagrass pastures (Paspalum notatum Flüggé; 1.3 ha, n = 4 pairs/pasture), with or without access to artificial shade [NO SHADE BRANGUS (NSB), NO SHADE ANGUS (NSA), SHADE BRANGUS (SB), and SHADE ANGUS (SA)] for 56 d that anticipated weaning during the summer season in Florida. Body condition score (BCS) of cows, blood samples, and BW of cow-calf pairs were obtained every 14 d during the 56-d experimental period until weaning. Following weaning (d 56), treatments were ceased, and cows and weaned heifers were managed alike. Weaned heifers were randomly allocated to 4 pens (n = 12/pen) equipped with GrowSafe feed bunks for 14 d to assess stress responses during weaning via plasma haptoglobin. An effect of SHADE × BREED interaction was detected for cow ADG, BW change, final BW, and final BCS, where SB had the greatest ADG, BW change, final BW, and final BCS. On d 14, SA cows had the greatest concentrations of insulin whereas on d 28 NSB had the lowest concentrations, NSA the greatest, and SA and SB being intermediate. On d 56, SA tended to have the greatest plasma insulin concentrations and SB the lowest. Weight gain per area (kg/ha) tended to be 11.4 kg/ha greater in SHADE vs. NO SHADE pastures. Pre-weaning calf ADG tended to be 0.14 kg greater for SHADE vs. NO SHADE calves. Weaning weight and BW at 14-d post-weaning were lesser for NSB vs. NSA, SA, and SB, whereas no differences in postweaning ADG or haptoglobin were observed. Effects of SHADE × BREED × day interaction was detected on plasma concentrations of IGF-1, in which NSA heifers had the lowest concentrations on weaning day. Gestation length was greater for SHADE vs. NO SHADE cows, but with no impacts on subsequent calf birth and weaning weight. In summary, providing artificial shade to pregnant-lactating beef cows increased body weight gain of nursing heifers and Brangus cows, while no impact on Angus dams were observed. The provision of artificial shade during the first trimester of gestation did not alter growth performance of the subsequent offspring at birth and weaning even though gestation length was longer.


Subject(s)
Diet , Insulins , Pregnancy , Cattle , Animals , Female , Diet/veterinary , Lactation , Haptoglobins , Weight Gain/physiology , Animal Feed/analysis
5.
Microb Ecol ; 86(4): 2703-2715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37507489

ABSTRACT

Soil microorganisms play key roles in soil nutrient transformations and have a notable effect on plant growth and health. Different plant genotypes can shape soil microbial patterns via the secretion of root exudates and volatiles, but it is uncertain how a difference in soil microorganisms induced by crop cultivars will respond to short-term seasonal variations. A field experiment was conducted to assess the changes in soil bacterial communities of seven rhizoma peanut (Arachis glabrata Benth, RP) cultivars across two growing seasons, April (Spring season) and October (Fall season). Soils' bacterial communities were targeted using 16S rRNA gene amplicon sequencing. Bacterial community diversity and taxonomic composition among rhizoma peanut cultivars were significantly affected by seasons, cultivars, and their interactions (p < 0.05). Alpha diversity, as estimated by the OTU richness and Simpson index, was around onefold decrease in October than in April across most of the RP cultivars, while the soils from Arblick and Latitude had around one time higher alpha diversity in both seasons compared with other cultivars. Beta diversity differed significantly in April (R = 0.073, p < 0.01) and October (R = 0.084, p < 0.01) across seven cultivars. Bacterial dominant taxa (at phylum and genus level) were strongly affected by seasons and varied towards more dominant groups that have functional potentials involved in nutrient cycling from April to October. A large shift in water availability induced by season variations in addition to host cultivar's effects can explain the observed patterns in diversity, composition, and co-occurrence of bacterial taxa. Overall, our results demonstrate an overriding effect of short-term seasonal variations on soil bacterial communities associated with different crop cultivars. The findings suggest that season-induced shifts in environmental conditions could exert stronger impacts on soil microorganisms than the finer-scale rhizosphere effect from crop cultivars, and consequently influence largely microbe-mediated soil processes and crop health in agricultural ecosystems.


Subject(s)
Arachis , Soil , Seasons , Arachis/microbiology , Ecosystem , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Soil Microbiology
6.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37279326

ABSTRACT

Improvements in forage nutritive value can reduce methane emission intensity in grazing ruminants. This study was designed to evaluate how the legume rhizoma peanut (Arachis glabrata; RP) inclusion into bahiagrass (Paspalum notatum) hay diets would affect intake and CH4 production in beef steers. We also assessed the potential to estimate the proportion of RP contribution to CH4 emissions using δ13C from enteric CH4. Twenty-five Angus-crossbred steers were randomly allocated to one of five treatments (five steers per treatment blocked by bodyweight): 1) 100% bahiagrass hay (0%RP); 2) 25% RP hay + 75% bahiagrass hay (25%RP); 3) 50% RP hay + 50% bahiagrass hay (50%RP); 4) 75% RP hay + 25% bahiagrass hay (75%RP); 5) 100% RP hay (100%RP). The study was laid out using a randomized complete block design, and the statistical model included fixed effect of treatment, and random effect of block. Methane emissions were collected using sulfur hexafluoride (SF6) technique, and apparent total tract digestibility was estimated utilizing indigestible neutral detergent fiber as an internal marker. A two-pool mixing model was used to predict diet source utilizing CH4 δ13C. Inclusion of RP did not affect intake or CH4 production (P > 0.05). Methane production per animal averaged 250 g CH4/d and 33 g CH4/kg dry matter intake, across treatments. The CH4 δ13C were -55.5, -60.3, -63.25, -63.35, and -68.7 for 0%RP, 25%RP, 50%RP, 75%RP, and 100%RP, respectively, falling within the reported ranges for C3 or C4 forage diets. Moreover, there was a quadratic effect (P = 0.04) on the CH4 δ13C, becoming more depleted (e.g., more negative) as the diet proportion of RP hay increased, appearing to plateau at 75%RP. Regression between predicted and observed proportions of RP in bahiagrass hay diets based on δ13C from CH4 indicate δ13C to be useful (Adj. R2 = 0.89) for predicting the contribution of RP in C3-C4 binary diets. Data from this study indicate that, while CH4 production may not always be reduced with legume inclusion into C4 hay diets, the δ13C technique is indeed useful for tracking the effect of dietary sources on CH4 emissions.


Investigating methods for reducing enteric methane emissions from ruminant livestock are important to reduce environmental impacts and improving production efficiency through reduced energy losses. This experiment evaluated the effects of increasing proportion of rhizoma peanut hay (a C3 legume) into bahiagrass hay (a C4 grass) on intake and methane production in beef steers. In addition, carbon stable isotopes (13C) of the methane emitted were used to back-calculate the diet components consumed. Angus-crossbred steers were randomly allocated to one of five hay diets (treatments): 1) 100% bahiagrass; 2) 25% rhizoma peanut + 75% bahiagrass; 3) 50% rhizoma peanut + 50% bahiagrass; 4) 75% rhizoma peanut + 25% bahiagrass; 5) 100% rhizoma peanut. Inclusion of rhizoma peanut did not affect intake or methane production, but apparent total tract digestibility increased as proportion of rhizoma peanut increased in the diet. The carbon stable isotope composition observed from enteric methane production was within the expected ranges for C3­C4 forage diets. Furthermore, the carbon stable isotope composition from enteric methane production was useful in predicting contributions from each diet source in C3­C4 binary diets.


Subject(s)
Fabaceae , Paspalum , Cattle , Animals , Carbon Isotopes , Methane , Diet/veterinary , Ruminants , Arachis , Animal Feed/analysis , Rumen
7.
Sci Rep ; 13(1): 3572, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864179

ABSTRACT

This study evaluated the role of dung beetle species alone or associated under different species on nitrous oxide (N2O) emission, ammonia volatilization, and the performance of pearl millet [Pennisetum glaucum (L.)]. There were seven treatments, including two controls (soil and soil + dung without beetles), single species of Onthophagus taurus [Shreber, 1759] (1), Digitonthophagus gazella [Fabricius, 1787] (2), or Phanaeus vindex [MacLeay, 1819] (3); and their assemblages (1 + 2 and 1 + 2 + 3). Nitrous oxide emission was estimated for 24 days, when pearl millet was planted in sequence to assess growth, nitrogen yield (NY), and dung beetle activity. Dung beetle species presented greater N2O flow of dung on the 6th day (80 g N2O-N ha-1 day-1) compared to soil and dung (2.6 g N2O-N ha-1 day-1). Ammonia emissions varied with the presence of dung beetles (P < 0.05), and D. gazella had less NH3-N on days 1, 6, and 12 with averages of 2061, 1526, and 1048 g ha-1 day-1, respectively. The soil N content increased with dung + beetle application. Dung application affected pearl millet herbage accumulation (HA) regardless of dung beetle presence, and averages ranged from 5 to 8 g DM bucket-1. A PCA analysis was applied to analyze variation and correlation to each variable, but it indicated a low principal component explanation (less than 80%), not enough to explain the variation in findings. Despite the greater dung removal, the largest species, P. vindex and their species combination, need to be more studied to get a better understanding about their contribution on greenhouse gases. The presence of dung beetles prior to planting improved pearl millet production by enhancing N cycling, although assemblages with the three beetle species enhanced N losses to the environment via denitrification.


Subject(s)
Antelopes , Coleoptera , Pennisetum , Animals , Ammonia , Nitrous Oxide , Volatilization , Nutrients , Soil
8.
J Environ Qual ; 52(4): 847-858, 2023.
Article in English | MEDLINE | ID: mdl-36897284

ABSTRACT

Integrated crop-livestock systems provide an array of benefits to agricultural systems, including a reduction in nitrogen (N) leaching. A farm approach to integrate crops and livestock is the adoption of grazed cover crops. Moreover, the addition of perennial grasses into crop rotations may improve soil organic matter and decrease N leaching. However, the effect of grazing intensity in such systems is not fully understood. This 3-year study investigated short-term effects of cover crop planting (cover and no cover), cropping system (no grazing, integrated crop-livestock [ICL], and sod-based rotation [SBR]), grazing intensity (heavy, moderate, and light grazing), and cool-season N fertilization (0, 34, and 90 kg N ha-1 ) on NO3 -N and NH4 -N concentration in leachate, and cumulative N leaching by using 1.5-m deep drain gauges. The ICL was a cool-season cover crop-cotton (Gossypium hirsutum L.) rotation, whereas SBR was a cool-season cover crop-bahiagrass (Paspalum notatum Flüggé) rotation. There was a treatment × year × season for cumulative N leaching (p = 0.035). Further contrast analysis indicated that cover crops decreased cumulative N leaching compared to no cover (18 vs. 32 kg N ha-1 season-1 ). Nitrogen leaching was lesser for grazed compared to nongrazed systems (14 vs. 30 kg N ha-1 season-1 ). Treatments containing bahiagrass had lesser NO3 -N concentration in leachate (7 vs. 11 mg L-1 ) and cumulative N leaching (8 vs. 20 kg N ha-1 season-1 ) compared to ICL systems. Adding cover crops can reduce cumulative N leaching in crop-livestock systems; moreover, warm-season perennial forages can further enhance this benefit.


Subject(s)
Livestock , Nitrates , Animals , Florida , Soil , Agriculture , Crops, Agricultural , Nitrogen
9.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36773039

ABSTRACT

Eighty-four Angus crossbred heifers (13 ± 1 mo of age, 329.5 ± 61.92 kg of body weight [BW]) were used in a generalized randomized block design with a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) diet type (whole plant sorghum silage [SS] vs. byproducts-based [BP]), and 2) feed additive: Aspergillus oryzae prebiotic (AOP; 2 g/d) vs. Negative control (CTL; 0 g/d), resulting in four treatments: sorghum silage-control (SC), sorghum silage-AOP (SA), byproducts-control (BC), and byproducts-AOP (BA). Heifers were stratified by body weight (BW), randomly assigned to treatments (21 heifers per treatment) and housed in 12 pens equipped with two GrowSafe feed bunks each to measure individual dry matter intake (DMI). After a 14-d adaptation, BW was measured every 14 d for 56 d. Chewing activity was monitored through collar-mounted HR-Tags (heat-related tags). Following the performance period, apparent total tract digestibility was measured in 40 heifers, using indigestible neutral detergent fiber as a marker. Heifers fed with the BP diets had greater DMI (2.92% vs. 2.59% of BW, P < 0.01) and average daily gain (ADG; 1.16 vs. 0.68 kg, P ≤ 0.01) than heifers fed with SS diets. Compared with BP-fed animals, heifers consuming the SS diets had 23 more visits/d to the feed bunks (P ≤ 0.01), consumed 53% less dry matter on each visit (P ≤ 0.01), and spent 39% more min chewing/d and 63% more min chewing/kg of DMI (P ≤ 0.01). However, chewing measured in min/kg of neutral detergent fiber intake was not affected by treatment (average 111.3 min/kg of NDF intake). Feeding AOP improved gain:feed (GF) by 15% in BP-fed heifers (0.120 vs. 0.104 kg/kg; P < 0.05). Inclusion of AOP increased organic matter digestibility (OMD) in SS diets (55.88% vs. 49.83%; P < 0.01), whereas it decreased OMD in BP diets (61.67% vs. 65.77%; P < 0.05). In conclusion, ADG and GF of BP-fed heifers was greater than SS-fed heifers, and GF was greater with AOP supplementation in BP-fed heifers. Improvement in GF in BP-fed heifers was likely not related to differences in nutrient digestibility as AOP inclusion did not enhance digestibility in the BP diet. Additionally, the effects of the AOP inclusion appear to be diet-dependent, where the 15% improvement in GF by AOP occurred in heifers fed with the more fermentable diet. Therefore, further research should explore the mechanisms responsible for the observed improvements in growth performance when feeding AOP to BP-fed heifers.


This experiment evaluated the effects of the dietary inclusion or not of Aspergillus oryzae prebiotic (AOP; 2 g/d) in two contrasting diets: sorghum silage-based (SS) vs. byproducts-based (BP), on growth performance, nutrient digestibility, and feeding behavior of growing heifers. A total of 84 Angus crossbred heifers were used in the study. Heifers fed with the BP diets had greater feed intake, average daily gain, and final body weight. In addition, heifers fed with the BP diets had reduced number of visits to the feed bunk but consumed more in each visit than heifers fed with the SS diets. Additionally, heifers fed with the BP diets had lesser chewing activity measured in total min/d and in min/kg of dry matter intake; however, chewing activity measured in min/kg of neutral detergent fiber was not influenced by treatments. The inclusion of AOP increased the gain:feed ratio by 15% in heifers fed with the BP diet but did not influence this variable in the SS diet. The inclusion of AOP increased nutrient digestibility in heifers fed with the SS diet and decreased nutrient digestibility in heifers fed with the BP diet. These results show that feeding AOP can enhance growth performance in beef heifers in a diet-dependent manner.


Subject(s)
Aspergillus oryzae , Sorghum , Cattle , Animals , Female , Silage/analysis , Prebiotics , Detergents/pharmacology , Digestion , Dietary Fiber/pharmacology , Zea mays , Diet/veterinary , Feeding Behavior , Nutrients , Body Weight , Edible Grain , Animal Feed/analysis
10.
Sci Rep ; 12(1): 17138, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229636

ABSTRACT

Stable isotopes are useful for estimating livestock diet selection. The objective was to compare δ13C and δ15N to estimate diet proportion of C3-C4 forages when steers (Bos spp.) were fed quantities of rhizoma peanut (Arachis glabrata; RP; C3) and bahiagrass (Paspalum notatum; C4).Treatments were proportions of RP with bahiagrass hay: 100% bahiagrass (0%RP); 25% RP + 75% bahiagrass (25%RP); 50% RP + 50% bahiagrass (50%RP); 75% RP + 25% bahiagrass (75%RP); and 100% RP (100% RP). Feces, plasma, red blood cell (RBC), and hair were collected at 8-days intervals, for 32 days. Two-pool mixing model was utilized to back-calculate the proportion of RP based on the sample and forage δ13C or δ15N. Feces showed changes using δ13C by 8 days, and adj. R2 between predicted and observed RP proportion was 0.81 by 8 days. Plasma, hair, and RBC required beyond 32-days to reach equilibrium, therefore were not useful predictors of diet composition during the study. Diets were best represented using fecal δ13C at both 8-days and 32-days. By 32-days, fecal δ15N showed promise (R2 = 0.71) for predicting diet composition in C3-C4 diets. Further studies are warranted to further corroborate fecal δ15N as a predictor of diet composition in cattle.


Subject(s)
Diet , Paspalum , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Feces , Isotopes
11.
Animals (Basel) ; 12(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077947

ABSTRACT

Two experiments were performed to evaluate the effects of (1) different levels of liquid supplementation (LS) based on molasses enriched with 32% (as fed; 45% on DM basis) crude protein (CP) on intake of Hemarthria altissima hay (LH), digestibility, and rumen fermentation, and (2) different levels of LS based on molasses enriched with 32% CP in the in vitro gas production in LH diets. In Exp. 1, twelve heifers and 12 adult male castrated and cannulated cattle were used. Treatments were allocated in a randomized block design, in four treatments: (CTL) access ad libitum to the LH; (SUP2) ad libitum access to LH and supplementation with 0.9 kg d−1; (SUP4) ad libitum access to LH and supplementation with 1.8 kg d−1 and; (SUP6) ad libitum access to LH with 2.7 kg d−1. In Exp. 2, treatments were carried out in a randomized block design with four different proportions of LH diet: (CTL) 100 LH, (SUP2) 85 LH and 15 LS, (SUP4) 70 LH and 30 LS, (SUP6) 55 LH and 45% LS. In Exp. 1, liquid molasses-based supplementation did not affect LH intake (p > 0.05). Molasses intake improved as the supply increased, not reducing the intake of LH. In Exp. 2, the addition of LS to the LH caused a change in the VFA profile, with an increase in propionate production in vitro.

12.
Sci Rep ; 12(1): 14318, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996007

ABSTRACT

The objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don] on in vitro digestible organic matter (IVDOM), total gas production (GP), methane (CH4) emission, and ruminal fluid parameters after fermentation. Substrates used in four 48-h in vitro fermentations were 100% bermudagrass [(Cynodon dactylon (L.) Pers.] hay (0SL), 100% SL hay (100SL), and a mix of both hays (50SL). Linear reductions were observed for all parameters (P < 0.05) with the inclusion of SL, except for CH4 in relation to GP, that presented a quadratic effect (P = 0.005). In Trial 2, SL plants were enriched with 13C-CO2 to obtain pure enriched CT to identify the destination of fermentation end products of CT degradation. The enrichment of CT through the SL was successful (P < 0.001), and carbon originated from CT was detected in the fermentation end products [microbial mass, clarified rumen fluid, and in the CH4 produced (P < 0.001)]. Therefore, inclusion of SL was effective in reducing in vitro CH4 production and compound-specific tracing of δ13C abundance provided better quantitative understanding of the mechanisms of partitioning CT during ruminal fermentation processes.


Subject(s)
Lespedeza , Proanthocyanidins , Animal Feed/analysis , Animals , Diet , Fermentation , Goats/metabolism , Isotopes/metabolism , Methane/metabolism , Proanthocyanidins/pharmacology , Rumen/metabolism
13.
Sci Rep ; 12(1): 14220, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987790

ABSTRACT

The objectives of this study were to determine the emission of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), as well as the isotopic composition of N2O from excreta of beef steers fed 'AU Grazer' sericea lespedeza hay [SL; Lespedeza cuneata (Dum. Cours.) G. Don]. Fifteen Brahman × Angus crossbred steers were fed one of three experimental diets: 0, 50, or 100% inclusion of SL into 'Tifton 85' bermudagrass hay (Cynodon spp.). Gas sampling occurred on days 0, 1, 3, 5, 7, 14, 18, 25, and 32 after urine or feces application to static chambers for two experimental periods. Effect of the day after feces application (P < 0.001), while day × inclusion of SL interaction was observed in urine (P < 0.001) for all greenhouse gases (GHG) analyzed. Peaks of emission of all GHG in urine and feces occurred in the first days (P < 0.001), with days 3 and 5 being most depleted in 15N-N2O in feces, and days 3, 5, and 7, in urine (P < 0.001). Feeding SL to beef steers was effective in mitigating the emission of GHG from the excreta, but further research is necessary to investigate the mechanisms behind the reductions.


Subject(s)
Fabaceae , Greenhouse Gases , Lespedeza , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Methane , Nitrous Oxide , Tannins , Vegetables
14.
Sci Rep ; 12(1): 9967, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705653

ABSTRACT

Roots and rhizomes can play an important role in nutrient cycling, however, few studies have investigated how their decomposition pattern is affected by defoliation and time of the year. This 2-year study evaluated root-rhizome composition and decomposition of a warm-season rhizomatous perennial legume [rhizoma peanut (RP; Arachis glabrata Benth.)] under continuous stocking or when defoliated by clipping every 56 days. A 168-days incubation trial was performed to determine disappearance of biomass and N and changes in acid detergent fiber (ADF), acid detergent insoluble N (ADIN), and C:N ratio. Additionally, three 56-days incubations were performed each year to evaluate the disappearance coefficient (B0) and relative decay rate (k). There were no treatment differences in any response for the 168-days incubation. After 168 days, 21 and 60% of initial biomass and initial N remained, respectively. Relative decay rate for OM and N were 0.0088 and 0.0035 g g-1 day-1, respectively. Carbon-to-N ratio decreased from 29 at day 0 to 17 at day 168. Concentration of ADIN increased from 6.9 to 19.3 g kg-1, plateauing at day 79. The B0 and k for remaining OM and N were greater in late than early season and could be explained by greater N concentration and lesser C:N ratio. Rapid decomposition, difference in C:N ratio from day 0 to 168, and the increase in ADIN concentration during incubation indicate large amounts of root-rhizome-soluble C at initiation of incubation. These data indicate that RP root-rhizome turnover is more responsive to season than defoliation frequency.


Subject(s)
Arachis , Fabaceae , Biomass , Carbon , Detergents
15.
J Environ Qual ; 51(1): 55-65, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34978336

ABSTRACT

Incorporating legumes is one option for improving pasture fertility, sustainability, and biodiversity. Diazotrophic microorganisms, including rhizobia that form symbioses with legumes, represent a small fraction of the total soil microbial community. Yet, they can offset nitrogen (N) fertilizer inputs through their ability to convert atmospheric N2 into plant-usable N via biological N2 fixation (BNF). This study used amplicon sequencing of 16S rRNA genes to investigate soil bacterial community composition and diversity in grazed 'Argentine' bahiagrass (Paspalum notatum Flügge) pastures where N fertilizer was supplanted with legume-derived N from BNF in some treatments. Treatments consisted of bahiagrass fertilized with (a) mineral N (224 kg N ha-1  yr-1 ), (b) combination mineral N (34 kg N ha-1  yr-1 ) and legume-derived N via cool-season clover (CSC) (Trifolium spp.) mix, or (c) combination mineral N (34 kg N ha-1  yr-1 ) and legume-derived N via CSC mix and strips of Ecoturf rhizoma peanut (Arachis glabrata Benth.). Bradyrhizobium spp. relative abundance was 44% greater in the mixed pasture. Other bacterial genera with BNF or denitrification potentials were greater in pastures with legumes, whereas sequences assigned to genera associated with high litter turnover were greater in bahiagrass pastures receiving only mineral N. Soil bacteria alpha diversity was greater in pastures receiving 34 kg ha-1  yr-1 N fertilizer application and the CSC mix than in pastures with the CSC mix and rhizoma peanut strips. Our results demonstrate soil microbial community shifts that may affect soil C and N cycling in pastures common to the southeastern United States.


Subject(s)
Arachis , Soil , Bacteria/genetics , Florida , RNA, Ribosomal, 16S/genetics
16.
J Anim Sci ; 100(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34919708

ABSTRACT

To determine the effect of CaO-treated Pensacola bahiagrass (Paspalum notatum) hay on intake, ruminal fermentation parameters, and apparent total-tract digestibility of nutrients, nine ruminally cannulated Angus-crossbred steers were used in a triplicated 3 × 3 Latin square design. Steers had ad libitum access to either 1) untreated dry hay (DH; n = 8); 2) hay at 50% DM treated with 8.9% CaCO3 (dry matter [DM] basis; CC; n = 9); or 3) hay at 50% DM treated with 5% CaO (DM basis; CO; n = 8). Water was added to reach 50% DM in the CC and CO diets. Ruminal fluid and blood samples were collected every 3 h for 24 h. Ruminal fluid was analyzed for pH, volatile fatty acids (VFA), and ammonia-nitrogen (NH3-N). Blood was analyzed for plasma urea nitrogen (PUN). Hay and fecal samples were collected for 4 d, four times daily for hay and twice daily for feces, to determine apparent total-tract digestibility of nutrients. The hay provided to steers during the digestibility period was analyzed for in vitro organic matter digestibility (IVOMD) for 48 h. Data were analyzed as repeated measures for blood and ruminal fermentation parameters. Total DM intake was not affected (P ≥ 0.674) by treatment. A treatment effect (P < 0.001) was observed for average ruminal pH, where steers consuming CO had the greatest pH (P < 0.001). Ruminal concentration of NH3-N tended (P = 0.059) to be reduced in steers consuming CO. There was a treatment × time interaction (P = 0.023) on concentrations of PUN, where at 3 h DH and CO were lesser than CC (P ≤ 0.050) and at 21 h DH was lesser than CC (P = 0.020). Total VFA, acetate, propionate, butyrate, branched-chain VFA, and valerate concentrations were affected by treatment (P ≤ 0.035), where a reduction (P ≤ 0.034) occurred in steers consuming CO. No treatment differences were observed for total-tract digestibility of DM (P = 0.186), organic matter (P = 0.169), or crude protein (P = 0.152); however, steers consuming DH had greater neutral detergent fiber (P = 0.038) than CC and tended to be greater than CO (P = 0.082). The CO hay had greater (P = 0.005) IVOMD compared with DH and tended (P = 0.100) to be greater than CC. Bahiagrass hay treated with CaO may reduce ruminal fermentation, as indicated by decreased total VFA concentration without altering DM intake. The addition of CaO did not improve the digestibility of bahiagrass hay in vivo; however, in vitro results are contradictory and warrant further elucidation.


With the ever-growing desire to increase efficiency in beef cattle production, researchers have developed strategies such as treating poor-quality forages with chemicals to increase the digestibility of fiber fractions, consequently increasing their energy value for cattle feeding. Calcium oxide has been proposed as a replacement to more caustic chemicals used in the past (e.g., NaOH) and data indicate that it can promote similar and effective outcomes. The current study evaluated the effects of bahiagrass hay treated with calcium oxide on ruminal fermentation parameters, apparent total-tract digestibility of nutrients, and intake by beef steers consuming hay ad libitum as the sole ingredient in their diet. Additionally, in vitro organic matter digestibility was evaluated on the hay provided to steers to assess treatment effectiveness. Results indicated that steers consuming bahiagrass hay treated with calcium oxide had 1) increased pH and reduced volatile fatty acids concentrations in the rumen; 2) reduced or tendency for reduction on total-tract digestibility of fiber fractions; and 3) no effect on intake, all when compared with steers consuming untreated hay. In contrast, in vitro results indicated that organic matter digestibility was increased when the forage was treated with calcium oxide.


Subject(s)
Paspalum , Animal Feed/analysis , Animals , Calcium Compounds , Cattle , Diet/veterinary , Dietary Supplements , Digestion , Fermentation , Oxides , Rumen/metabolism
17.
Transl Anim Sci ; 5(4): txab195, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34761166

ABSTRACT

Two experiments were conducted to evaluate the effects of Pensacola bahiagrass (Paspalum notatum) hay treated with calcium oxide (CaO) and molasses on performance of growing beef cattle supplemented or not with cottonseed meal. In Exp. 1, growing Bos indicus influenced heifers (n = 59; 250 ± 29 kg body weight [BW]) and steers (n = 37; 256 ± 45 kg BW) were used. In Exp. 2, heifers (n = 56; 249 ± 26 kg BW) and steers (n = 8; 249 ± 20 kg BW) from Exp. 1 were used. Both experiments were randomized complete block designs and consisted of 56-d periods in which cattle were weighed every 14 d. On day 0, cattle were weighed after a 16-h water and feed withdrawal, stratified by sex, breed, and BW, and blocked by initial BW. Cattle were allotted to 24 and 16 dormant bahiagrass pastures (1.34 ha each) in Exp. 1 and Exp. 2, respectively. Pastures were located in two different areas within 0.52 km of each other and were stratified by location and randomly assigned (n = 8 pastures/treatment) to treatment. In Exp. 1 treatments were: 1) untreated dry hay (DH); 2) hay treated with 10% molasses (dry matter [DM] basis) + water (to 65% DM; MOL); or 3) hay treated with 5% CaO (DM basis) + 10% molasses (DM basis) + water (to 65% DM; CAO). In Exp. 2 only treatments MOL and CAO were applied, and cottonseed meal was provided at 0.3% of cattle BW/d (as fed basis). In both experiments, data were analyzed using pasture as the experimental unit. The model included the fixed effects of treatment, sex, and their interaction (Exp. 1). Location and block were included as random effects. In both experiments, initial and final BW were not affected by treatment (P ≥ 0.362 and P ≥ 0.283, respectively) or sex (P ≥ 0.512 and P ≥ 0.495, respectively) and no treatment × sex interaction was observed in Exp. 1 (P > 0.05). Additionally, no effects of treatment (P ≥ 0.515), sex (P ≥ 0.285), or treatment × sex interaction (Exp. 1; P = 0.582) were observed on average daily gain (average of -0.03 kg in Exp. 1 and 0.537 kg in Exp. 2). Bahiagrass hay treated with molasses alone or in combination with CaO failed to improve performance of growing beef cattle. However, when protein supplementation via cottonseed meal was provided, cattle did not experience weight loss.

18.
Transl Anim Sci ; 5(4): txab204, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34805770

ABSTRACT

An experiment was designed to evaluate the effects of CaO on ruminal in situ degradability (RISD) of forage components and in vitro organic matter digestibility (IVOMD) of warm-season forages. Bahiagrass (Paspalum notatum; BH) or Tifton 85 bermudagrass (Cynodon spp.; BM) hay were stored in 20-L buckets in two consecutive years (n = 4/treatment) as follows: 1) untreated dry BH or BM (DH); 2) hydrated BH or BM stored for 7 d (W7); 3) hydrated BH or BM stored for 14 d (W14); 4) hydrated BH or BM + 5% [dry matter (DM) basis] CaO stored for 7 d (CO5-7); 5) hydrated BH or BM + 5% (DM basis) CaO stored for 14 d (CO5-14); and 6) hydrated BH or BM + 10% (DM basis) CaO stored for 14 d (CO10). With exception of the dry treatment (DH), tap water was added to forages under the remaining treatments to reach a DM concentration of 50%. Ruminal in situ degradability of DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of BH and BM was determined for 24, 48, and 72 h in two ruminally cannulated steers consuming BH. Data were analyzed as a randomized block design using bucket as the experimental unit. The model included the fixed effect of treatment and the random effect of year. Concentration of NDF was reduced (P < 0.001) when BH and BM were treated with 10% and 5% CaO and compared with DH. However, only CO10 promoted a reduction (P = 0.007) in ADF concentration of BH, whereas CO10 and CO5, regardless of storage length, reduced (P ≤ 0.006) ADF concentration of BM, when compared with DH. At all ruminal incubation time points, a treatment effect (P < 0.001) was observed on RISD of DM, OM, CP, NDF, and ADF of BH and BM, where all treatments containing CaO promoted greater degradability when compared with DH, W7, and W14, which did not differ (P > 0.05). Ruminal degradability of forage components was greatest (P < 0.05) for CO10, followed by CO5-7 and CO5-14, which did not differ (P > 0.05). In vitro organic matter digestibility was increased (P < 0.001) in both BH and BM when CaO was applied and compared to DH. Treatment of BH and BM with CaO seems to be an effective method of promoting increased digestibility of forage components, including fiber fractions, when applied at 5% of the forage DM with potential additional benefits to BH when applied at 10%.

19.
J Anim Sci ; 99(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34634110

ABSTRACT

Rhizoma peanut (RP, Arachis glabrata) hay has the potential to meet horses' crude protein (CP) requirements with less nitrogen excretion than other legumes. This study aimed to evaluate nutrient intake, apparent digestibility, and nitrogen balance of RP "Florigraze" hay compared with alfalfa (ALF, Medicago sativa L. "Legendary XHD") and bermudagrass (BG, Cynodon dactylon L. "Coastal") hays when fed to maintenance horses at 2% body weight/d on a dry matter (DM) basis. We hypothesized that nutrient intake would be comparable between the legume hays and lesser for BG and that RP would result in reduced nitrogen excretion compared with ALF. Six mature Quarter Horse geldings (593 ± 40 kg; mean ± SD) were randomly assigned to one of the hays in a replicated 3 × 3 Latin square with 21-d periods. A 14-d adaptation phase was followed by a 3-d total fecal and urine collection. Days 18 to 21 were used for a companion study. Intake of nutrients is reported on a DM basis. Digestible energy (DE) intakes from ALF (29.91 Mcal/d) and RP (29.37 Mcal/d) were greater (P < 0.0001) than BG (20.78 Mcal/d). CP intake was greater (P < 0.0001) for ALF (2.5 kg/d), followed by RP (1.9 kg/d) and BG (1.5 kg/d). All hays exceeded maintenance requirements for DE, CP, Ca, and P. Apparent digestibility of DM and CP was greatest (P < 0.0001) for ALF (69% and 84%), intermediate for RP (61% and 72%), and least for BG (46% and 64%). Apparent digestibility of neutral detergent fiber did not differ (P = 0.2228) among hays, while digestibility of acid detergent fiber (P = 0.0054) was least for RP but similar for ALF and BG. Water intake (kg/d) for ALF (57) was greater (P = 0.0068) than RP (45) and BG (41). Greater (P = 0.0271) water retention (kg/d) was observed for ALF (13.5), followed by RP (10.8) and BG (7.5). There was a difference in nitrogen excretion, with greatest urinary nitrogen excretion for ALF (P < 0.0001) and greatest fecal nitrogen excretion for BG (P = 0.0001). Total nitrogen excretion was greater (P < 0.0001) for ALF (278 g/d), followed by RP (211 g/d) and BG (179 g/d). Nitrogen retention was greater (P = 0.0005) for ALF when represented as g/d (ALF: 129, RP: 86, and BG: 57 g/d) but similar (P = 0.0377) to RP when presented as percent of nitrogen intake (ALF: 32%, RP: 29%, and BG: 24%). Results indicate that RP hay is a suitable legume for horses by meeting DE and CP requirements and having a significant reduction in nitrogen compared with ALF.


Subject(s)
Digestion , Nitrogen , Animal Feed/analysis , Animals , Arachis , Diet/veterinary , Horses , Male , Medicago sativa , Water
20.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34551095

ABSTRACT

Two experiments were performed to evaluate the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro ruminal fermentation, growth, apparent total tract digestibility of nutrients, liver mineral concentration, and carcass quality of beef cattle. In Exp. 1, four ruminally cannulated steers (520 ± 30 kg body weight [BW]) were used as donors to perform a batch culture and an in vitro organic matter digestibility (IVOMD) procedure. Treatments were arranged in a 2 × 2 factorial with factors being BSS (0 or 0.33% of substrate dry matter [DM]) and CAN (0 or 2.22% of substrate DM). In Exp. 2, 200 Angus-crossbred steers (385 ± 27 kg BW) were blocked by BW and allocated to 50 pens (4 steers/pen) in a randomized complete block design with a 2 × 2 + 1 factorial arrangement of treatments. Factors included BSS (0 or 0.33% of the diet DM) and nonprotein nitrogen (NPN) source (urea or encapsulated CAN [eCAN] included at 0.68% or 2.0% of the diet, respectively) with 0.28% ruminally available S (RAS). A low S diet was included as a positive control containing urea (0.68% of DM) and 0.14% RAS. For Exp. 1, data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, CAN, BSS × CAN, and the random effect of donor. For Exp. 2, the MIXED procedure of SAS was used for continuous variables and the GLIMMIX procedure for categorical data. For Exp. 1, no differences (P > 0.230) were observed for IVOMD. There was a tendency (P = 0.055) for an interaction regarding H2S production. Acetate:propionate increased (P = 0.003) with the addition of CAN. In Exp. 2, there was a NPN source effect (P = 0.032) where steers consuming urea had greater carcass-adjusted final shrunk BW than those consuming eCAN. Intake of DM (P < 0.001) and carcass-adjusted average daily gain (P = 0.024) were reduced by eCAN; however, it did not affect (P = 0.650) carcass-adjusted feed efficiency. Steers consuming urea had greater (P = 0.032) hot carcass weight, and a BSS × NPN interaction (P = 0.019) was observed on calculated yield grade. Apparent absorption of S decreased (P < 0.001) with the addition of BSS. Final liver Cu concentration was reduced (P = 0.042) by 58% in cattle fed BSS, indicating that BSS may decrease Cu absorption and storage in the liver. The results observed in this experiment indicate that BSS does not have negative effects on feedlot steer performance, whereas CAN may hinder performance of steers fed finishing diets.


Subject(s)
Animal Feed , Rumen , Animal Feed/analysis , Animals , Bismuth , Calcium , Cattle , Diet/veterinary , Digestion , Nitrates , Organometallic Compounds , Salicylates
SELECTION OF CITATIONS
SEARCH DETAIL
...