Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 833: 155253, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35429570

ABSTRACT

The function of engineered thermal backfills surrounding underground pipelines of the crude oil industry is to prohibit heat migration for the design period of 25 to 50 years. Biochar is suitable for reconstituting standard thermal backfill material since it is biochemically inert and has a low heat conductivity. However, the preparation of biochar from biomass involves an energy-intensive pyrolysis process. This study aims to make biochar production energy-efficient via optimizing the pyrolysis temperatures, specifically for thermal backfill applications. Ten distinct biochars were prepared by pyrolyzing two waste biomass, i.e., water hyacinth (WH) and sugarcane bagasse (SB), at temperatures ranging from 300 to 700 °C. The biochars were assessed based on their thermal conductivity, energy consumption, yield, and stability in soil for the design period. The thermal conductivity of produced biochars varied in a narrow range of 0.10 to 0.13 W m-1 K-1 with different pyrolysis temperatures, which is possibly due to marginal differences in their microstructure, mineralogy, and physicochemical properties. The findings revealed that the biochar produced at lowest pyrolysis temperature (300 °C) consumed least energy and produced maximum yield. However, it was not suitable for thermal backfill applications due to its inadequate carbon stability in soil. Therefore, the current study recommends a pyrolysis temperature of 400 °C for thermal backfill applications. The recommended pyrolysis temperature was found to be at least 60% energy efficient in comparison to pyrolysis at 700 °C for both the feedstocks. This study provides crucial insight into the role of pyrolysis temperature for tailoring biochar production for intended applications.


Subject(s)
Cellulose , Saccharum , Charcoal/chemistry , Soil/chemistry , Temperature
3.
Sci Total Environ ; 800: 149513, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34392222

ABSTRACT

Mitigation of erosion along the riverbanks is a global challenge. Stabilisers such as cement can control erosion, but it risks the river ecology. This paper presents the erosion characteristics of riverbank soil treated with two biological stabilisers that alleviate the ecological cost. The riverbank soil of one of the largest river systems, Brahmaputra, is treated by bio-polymeric and bio-cement binders and their composite. Moreover, a novel selective bio-stimulation technique has been employed to achieve bio-mineralisation. The soil stabilisation is assessed by needle penetration tests and CaCO3 contents. The specimens were tested in a flow-controlled hydraulic flume subjected to a critical current profile ranging from 0.06 to 0.62 m/s. Soil samples treated up to four cycles of biocementation have been tested at three different slopes (30°, 45° and 53°). The eroded depth and erosion rate are evaluated with image analysis. Up to four-fold reduction in the erosion rate was observed with biocementation treatment. However, cementation beyond a threshold led to the formation of brittle chunks. A bio-composite was devised through a pre-treatment of low-viscosity biopolymer along with biocementation. The bio-composite was found to effectively mitigate the current-induced erosion with 36% lower ammonia production than the equally erosion resistant biocemented counterpart. The dual characteristics of the bio-composite were confirmed with the microstructural analysis. This study unravels the potential of biopolymer-biocement composite as a sustainable erosion mitigation strategy.


Subject(s)
Soil Erosion , Soil , Rivers
4.
Sci Rep ; 11(1): 15250, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315956

ABSTRACT

Riverbank erosion is a global problem with significant socio-economic impacts. Microbially induced calcite precipitation (MICP) has recently emerged as a promising technology for improving the mechanical properties of soils. The present study investigates the potential of selectively enriched native calcifying bacterial community and its supplementation into the riverbank soil of the Brahmaputra river for reducing the erodibility of the soil. The ureolytic and calcium carbonate cementation abilities of the enriched cultures were investigated with reference to the standard calcifying culture of Sporosarcina pasteurii (ATCC 11859). 16S rRNA analysis revealed Firmicutes to be the most predominant calcifying class with Sporosarcina pasteurii and Pseudogracilibacillus auburnensis as the prevalent strains. The morphological and mineralogical characterization of carbonate crystals confirmed the calcite precipitation potential of these communities. The erodibility of soil treated with native calcifying communities was examined via needle penetration and lab-scale hydraulic flume test. We found a substantial reduction in soil erosion in the biocemented sample with a calcite content of 7.3% and needle penetration index of 16 N/mm. We report the cementation potential of biostimulated ureolytic cultures for minimum intervention to riparian biodiversity for an environmentally conscious alternative to current erosion mitigation practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...