Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wirel Pers Commun ; : 1-17, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37360141

ABSTRACT

In the Covid-19 pandemic situation, the world is looking for immunity-boosting techniques for fighting against coronavirus. Every plant is medicine in one or another way, but Ayurveda explains the uses of plant-based medicines and immunity boosters for specific requirements of the human body. To help Ayurveda, botanists are trying to identify more species of medicinal immunity-boosting plants by evaluating the characteristics of the leaf. For a normal person, detecting immunity-boosting plants is a difficult task. Deep learning networks provide highly accurate results in image processing. In the medicinal plant analysis, many leaves are like each other. So, the direct analysis of leaf images using the deep learning network causes many issues for medicinal plant identification. Hence, keeping the requirement of a method at large to help all human beings, the proposed leaf shape descriptor with the deep learning-based mobile application is developed for the identification of immunity-boosting medicinal plants using a smartphone. SDAMPI algorithm explained numerical descriptor generation for closed shapes. This mobile application achieved 96%accuracy for the 64 × 64 sized images.

2.
IET Nanobiotechnol ; 14(4): 275-280, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32463017

ABSTRACT

Lead (Pb) ions are a major concern to the environment and human health as they are contemplated cumulative poisons. In this study, facile synthesis of magnetic iron oxide-tea waste nanocomposite is reported for adsorptive removal of lead ions from aqueous solutions and easy magnetic separation of the adsorbent afterwards. The samples were characterised by scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffraction, and Braunner-Emmet-Teller nitrogen adsorption study. Adsorptive removal of Pb(II) ions from aqueous solution was followed by ultraviolet-visible (UV-Vis) spectrophotometry. About 95% Pb(II) ion removal is achieved with the magnetic tea waste within 10 min. A coefficient of regression R2 ≃ 0.99 and adsorption density of 18.83 mg g-1 was found when Pb(II) ions were removed from aqueous solution using magnetic tea waste. The removal of Pb(II) ions follows the pseudo-second-order rate kinetics. External mass transfer principally regulates the rate-limiting phenomena of adsorption of Pb(II) ions on iron oxide-tea waste surface. The results strongly imply that magnetic tea waste has promising potential as an economic and excellent adsorbent for the removal of Pb(II) from water.


Subject(s)
Lead , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Wastewater/chemistry , Water Pollutants, Chemical , Adsorption , Ions/chemistry , Ions/isolation & purification , Ions/metabolism , Kinetics , Lead/chemistry , Lead/isolation & purification , Lead/metabolism , Tea , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...