Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol ; 52(9): 591-601, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35671792

ABSTRACT

Approximately 2 billion people worldwide and a significant part of the domestic livestock are infected with soil-transmitted helminths, of which many establish chronic infections causing substantial economic and welfare burdens. Beside intensive research on helminth-triggered mucosal and systemic immune responses, the local mechanism that enables infective larvae to cross the intestinal epithelial barrier and invade mucosal tissue remains poorly addressed. Here, we show that Heligmosomoides polygyrus infective L3s secrete acetate and that acetate potentially facilitates paracellular epithelial tissue invasion by changed epithelial tight junction claudin expression. In vitro, impedance-based real-time epithelial cell line barrier measurements together with ex vivo functional permeability assays in intestinal organoid cultures revealed that acetate decreased intercellular barrier function via the G-protein coupled free fatty acid receptor 2 (FFAR2, GPR43). In vivo validation experiments in FFAR2-/- mice showed lower H. polygyrus burdens, whereas oral acetate-treated C57BL/6 wild type mice showed higher burdens. These data suggest that locally secreted acetate - as a metabolic product of the energy metabolism of H. polygyrus L3s - provides a significant advantage to the parasite in crossing the intestinal epithelial barrier and invading mucosal tissues. This is the first and a rate-limiting step for helminths to establish chronic infections in their hosts and if modulated could have profound consequences for their life cycle.


Subject(s)
Nematospiroides dubius , Strongylida Infections , Acetates , Animals , Claudins , Fatty Acids, Nonesterified , Humans , Intestinal Mucosa , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Soil , Strongylida Infections/parasitology
2.
Arterioscler Thromb Vasc Biol ; 36(1): 122-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26564819

ABSTRACT

OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVß3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVß3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVß3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.


Subject(s)
Carotid Artery Diseases/metabolism , Carrier Proteins/metabolism , Cell Movement , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Animals , Apoptosis , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Carrier Proteins/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chemotaxis, Leukocyte , Disease Models, Animal , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Genotype , Glycoproteins/deficiency , Glycoproteins/genetics , Humans , Hyperplasia , Integrin alphaVbeta3/metabolism , Ligands , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Time Factors , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...