Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 872: 162222, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36796684

ABSTRACT

Methane emissions from natural gas are of ever-increasing importance as we struggle to reach Paris climate targets. Locating and measuring emissions from natural gas can be particularly difficult as they are often widely distributed across supply chains. Satellites are increasingly used to measure these emissions, with some such as TROPOMI giving daily coverage worldwide, making locating and quantifying these emissions easier. However, there is little understanding of the real-world detection limits of TROPOMI, which can cause emissions to go undetected or be misattributed. This paper uses TROPOMI and meteorological data to calculate, and create a map of, the minimum detection limits of the TROPOMI satellite sensor across North America for different campaign lengths. We then compared these to emission inventories to determine the quantity of emissions that can be captured by TROPOMI. We find that minimum detection limits vary from 500-8800 kg/h/pixel in a single overpass to 50-1200 kg/h/pixel for a yearlong campaign. This leads to 0.04 % of a year's emissions being captured in a single (day) measurement to 14.4 % in a 1-year measurement campaign. Assuming gas sites contain super-emitters, emissions of between 4.5 % - 10.1 % from a single measurement and 35.6 % - 41.1 % for a yearlong campaign are captured.

2.
Sci Total Environ ; 830: 154624, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35307429

ABSTRACT

Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas, H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2, but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work, we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2,HHV) of H2 supply chains, and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable, but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.


Subject(s)
Global Warming , Greenhouse Gases , Carbon Dioxide/analysis , Greenhouse Effect , Hydrogen , Methane/analysis , Natural Gas/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...