Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Data Brief ; 48: 109209, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37228419

ABSTRACT

A synthetic population is a simplified microscopic representation of an actual population. Statistically representative at the population level, it provides valuable inputs to simulation models (especially agent-based models) in research areas such as transportation, land use, economics, and epidemiology. This article describes the datasets from the Synthetic Sweden Mobility (SySMo) model using the state-of-art methodology, including machine learning (ML), iterative proportional fitting (IPF), and probabilistic sampling. The model provides a synthetic replica of over 10 million Swedish individuals (i.e., agents), their household characteristics, and activity-travel plans. This paper briefly explains the methodology for the three datasets: Person, Households, and Activity-travel patterns. Each agent contains socio-demographic attributes, such as age, gender, civil status, residential zone, personal income, car ownership, employment, etc. Each agent also has a household and corresponding attributes such as household size, number of children ≤ 6 years old, etc. These characteristics are the basis for the agents' daily activity-travel schedule, including type of activity, start-end time, duration, sequence, the location of each activity, and the travel mode between activities.

2.
Nat Commun ; 13(1): 5099, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042233

ABSTRACT

Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.


Subject(s)
Genome , Genomics , DNA/genetics , Gene Expression , Gene Expression Regulation
3.
J Indian Inst Sci ; 100(4): 793-807, 2020.
Article in English | MEDLINE | ID: mdl-33144763

ABSTRACT

COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars. Mathematical models have played an important role in the ongoing crisis; they have been used to inform public policies and have been instrumental in many of the social distancing measures that were instituted worldwide. In this article, we review some of the important mathematical models used to support the ongoing planning and response efforts. These models differ in their use, their mathematical form and their scope.

4.
ArXiv ; 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32995366

ABSTRACT

COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars. Mathematical models have played an important role in the ongoing crisis; they have been used to inform public policies and have been instrumental in many of the social distancing measures that were instituted worldwide. In this article we review some of the important mathematical models used to support the ongoing planning and response efforts. These models differ in their use, their mathematical form and their scope.

5.
PLoS One ; 15(7): e0234894, 2020.
Article in English | MEDLINE | ID: mdl-32667959

ABSTRACT

We present a multi-agent computational approach to partitioning semantic spaces using reinforcement-learning (RL). Two agents communicate using a finite linguistic vocabulary in order to convey a concept. This is tested in the color domain, and a natural reinforcement learning mechanism is shown to converge to a scheme that achieves a near-optimal trade-off of simplicity versus communication efficiency. Results are presented both on the communication efficiency as well as on analyses of the resulting partitions of the color space. The effect of varying environmental factors such as noise is also studied. These results suggest that RL offers a powerful and flexible computational framework that can contribute to the development of communication schemes for color names that are near-optimal in an information-theoretic sense and may shape color-naming systems across languages. Our approach is not specific to color and can be used to explore cross-language variation in other semantic domains.


Subject(s)
Communication , Reinforcement, Psychology , Semantics , Color , Color Perception , Humans , Language , Learning , Linguistics/statistics & numerical data , Models, Theoretical , Names , Vocabulary
6.
BMC Bioinformatics ; 12: 327, 2011 Aug 08.
Article in English | MEDLINE | ID: mdl-21824426

ABSTRACT

BACKGROUND: Temporal analysis of gene expression data has been limited to identifying genes whose expression varies with time and/or correlation between genes that have similar temporal profiles. Often, the methods do not consider the underlying network constraints that connect the genes. It is becoming increasingly evident that interactions change substantially with time. Thus far, there is no systematic method to relate the temporal changes in gene expression to the dynamics of interactions between them. Information on interaction dynamics would open up possibilities for discovering new mechanisms of regulation by providing valuable insight into identifying time-sensitive interactions as well as permit studies on the effect of a genetic perturbation. RESULTS: We present NETGEM, a tractable model rooted in Markov dynamics, for analyzing the dynamics of the interactions between proteins based on the dynamics of the expression changes of the genes that encode them. The model treats the interaction strengths as random variables which are modulated by suitable priors. This approach is necessitated by the extremely small sample size of the datasets, relative to the number of interactions. The model is amenable to a linear time algorithm for efficient inference. Using temporal gene expression data, NETGEM was successful in identifying (i) temporal interactions and determining their strength, (ii) functional categories of the actively interacting partners and (iii) dynamics of interactions in perturbed networks. CONCLUSIONS: NETGEM represents an optimal trade-off between model complexity and data requirement. It was able to deduce actively interacting genes and functional categories from temporal gene expression data. It permits inference by incorporating the information available in perturbed networks. Given that the inputs to NETGEM are only the network and the temporal variation of the nodes, this algorithm promises to have widespread applications, beyond biological systems.The source code for NETGEM is available from https://github.com/vjethava/NETGEM.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Models, Statistical , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Nat Commun ; 2: 268, 2011.
Article in English | MEDLINE | ID: mdl-21468020

ABSTRACT

Plasmids are important members of the bacterial mobile gene pool, and are among the most important contributors to horizontal gene transfer between bacteria. They typically harbour a wide spectrum of host beneficial traits, such as antibiotic resistance, inserted into their backbones. Although these inserted elements have drawn considerable interest, evolutionary information about the plasmid backbones, which encode plasmid related traits, is sparse. Here we analyse 25 complete backbone genomes from the broad-host-range IncP-1 plasmid family. Phylogenetic analysis reveals seven clades, in which two plasmids that we isolated from a marine biofilm represent a novel clade. We also found that homologous recombination is a prominent feature of the plasmid backbone evolution. Analysis of genomic signatures indicates that the plasmids have adapted to different host bacterial species. Globally circulating IncP-1 plasmids hence contain mosaic structures of segments derived from several parental plasmids that have evolved in, and adapted to, different, phylogenetically very distant host bacterial species.


Subject(s)
Bacteria/genetics , Evolution, Molecular , Plasmids/genetics , Recombination, Genetic , Bacteria/classification , DNA Transposable Elements , Molecular Sequence Data , Phylogeny
8.
Genome Med ; 1(9): 88, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19754960

ABSTRACT

Systems biology has matured considerably as a discipline over the last decade, yet some of the key challenges separating current research efforts in systems biology and clinically useful results are only now becoming apparent. As these gaps are better defined, the new discipline of systems medicine is emerging as a translational extension of systems biology. How is systems medicine defined? What are relevant ontologies for systems medicine? What are the key theoretic and methodologic challenges facing computational disease modeling? How are inaccurate and incomplete data, and uncertain biologic knowledge best synthesized in useful computational models? Does network analysis provide clinically useful insight? We discuss the outstanding difficulties in translating a rapidly growing body of data into knowledge usable at the bedside. Although core-specific challenges are best met by specialized groups, it appears fundamental that such efforts should be guided by a roadmap for systems medicine drafted by a coalition of scientists from the clinical, experimental, computational, and theoretic domains.

9.
Stat Appl Genet Mol Biol ; 5: Article8, 2006.
Article in English | MEDLINE | ID: mdl-16646872

ABSTRACT

Recently Peres and Shields discovered a new method for estimating the order of a stationary fixed order Markov chain. They showed that the estimator is consistent by proving a threshold result. While this threshold is valid asymptotically in the limit, it is not very useful for DNA sequence analysis where data sizes are moderate. In this paper we give a novel interpretation of the Peres-Shields estimator as a sharp transition phenomenon. This yields a precise and powerful estimator that quickly identifies the core dependencies in data. We show that it compares favorably to other estimators, especially in the presence of variable dependencies. Motivated by this last point, we extend the Peres-Shields estimator to Variable Length Markov Chains. We compare it to a well-established estimator and show that it is superior in terms of the predictive likelihood. We give an application to the problem of detecting DNA sequence similarity in plasmids.


Subject(s)
Markov Chains , Sequence Analysis, DNA/methods , DNA Transposable Elements , Models, Statistical , Plasmids/chemistry
10.
Bioinformatics ; 22(5): 517-22, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16403797

ABSTRACT

MOTIVATION: Analyses of genomic signatures are gaining attention as they allow studies of species-specific relationships without involving alignments of homologous sequences. A naïve Bayesian classifier was built to discriminate between different bacterial compositions of short oligomers, also known as DNA words. The classifier has proven successful in identifying foreign genes in Neisseria meningitis. In this study we extend the classifier approach using either a fixed higher order Markov model (Mk) or a variable length Markov model (VLMk). RESULTS: We propose a simple algorithm to lock a variable length Markov model to a certain number of parameters and show that the use of Markov models greatly increases the flexibility and accuracy in prediction to that of a naïve model. We also test the integrity of classifiers in terms of false-negatives and give estimates of the minimal sizes of training data. We end the report by proposing a method to reject a false hypothesis of horizontal gene transfer. AVAILABILITY: Software and Supplementary information available at www.cs.chalmers.se/~dalevi/genetic_sign_classifiers/.


Subject(s)
Chromosome Mapping/methods , DNA Fingerprinting/methods , DNA, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Pattern Recognition, Automated/methods , Sequence Analysis, DNA/methods , Artificial Intelligence , Bayes Theorem , Markov Chains , Models, Genetic , Models, Statistical , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...