Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 65(1): 171-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25287400

ABSTRACT

We examined whether central melanocortin 3 and 4 receptor (MC3/4R) blockade attenuates the blood pressure (BP) responses to chronic L-NAME or angiotensin II (Ang II) infusion in Sprague-Dawley rats implanted with telemetry transmitters, venous catheters, and intracerebroventricular cannula into the lateral ventricle. After 5 days of control measurements, L-NAME (10 µg/kg/min IV, groups 1 and 2) or Ang II (10 ng/kg/min IV, groups 3 and 4) were infused for 24 days, and starting on day 7 of L-NAME or Ang II infusion, the MC3/4R antagonist SHU-9119 (24 nmol/d, n=6/group; groups 1 and 3) or vehicle (saline 0.5 µL/h, n=6/group; groups 2 and 4) was infused intracerebroventricularly for 10 days. A control normotensive group also received SHU-9119 for 10 days (n=5). L-NAME and Ang II increased BP by 40±3 and 56±5 mm Hg, respectively, although heart rate was slightly reduced. MC3/4R blockade doubled food intake and reduced heart rate (≈40 to ≈50 bpm) in all groups. MC3/4R blockade caused only a small reduction in BP in normotensive group (4 mm Hg) and no change in rats receiving Ang II, although markedly reducing BP by 21±4 mm Hg in L-NAME-treated rats. After SHU-9119 infusion was stopped, food intake, heart rate, and BP gradually returned to values observed before SHU-9119 infusion was started. Ganglionic blockade at the end of L-NAME or Ang II infusion caused similar BP reduction in both groups. These results suggest that the brain MC3/4R contributes, at least in part, to the hypertension induced by chronic L-NAME infusion but not by Ang II.


Subject(s)
Angiotensin II/administration & dosage , Blood Pressure/physiology , Central Nervous System/metabolism , Hypertension/drug therapy , Nitric Oxide Synthase/antagonists & inhibitors , Receptor, Melanocortin, Type 3/antagonists & inhibitors , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Infusions, Intravenous , Male , Rats , Rats, Sprague-Dawley
2.
Hypertension ; 61(5): 1066-74, 2013 May.
Article in English | MEDLINE | ID: mdl-23529161

ABSTRACT

Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre). Oxygen consumption (Vo2), carbon dioxide respiration (Vco2), motor activity, heat production, food intake, and MAP were measured 24 hours/d. After baseline measurements, leptin was infused (4 µg/kg per min, IP) for 7 days. Stat3(flox/flox)/POMC-Cre mice were hyperphagic, heavier, and had increased respiratory quotients compared with control Stat3(flox/flox) mice. Baseline MAP was not different between the groups, and chronic leptin infusion reduced food intake similarly in both groups (27 versus 29%). Vo2, Vco2, and heat production responses to leptin were not significantly different in control and Stat3(flox/flox)/POMC-Cre mice. However, leptin-mediated increases in MAP were completely abolished, and blood pressure responses to acute air-jet stress were attenuated in male Stat3(flox/flox)/POMC-Cre mice. These results indicate that Stat3 signaling in POMC neurons is essential for leptin-mediated increases in MAP, but not for anorexic or thermogenic effects of leptin.


Subject(s)
Blood Pressure/drug effects , Blood Pressure/physiology , Leptin/pharmacology , Neurons/physiology , Pro-Opiomelanocortin/physiology , STAT3 Transcription Factor/physiology , Animals , Appetite/drug effects , Appetite/physiology , Body Weight/drug effects , Body Weight/physiology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Models, Animal , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Sex Factors , Signal Transduction/drug effects , Signal Transduction/physiology
3.
Hypertension ; 57(5): 918-26, 2011 May.
Article in English | MEDLINE | ID: mdl-21422382

ABSTRACT

Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 µg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.


Subject(s)
Appetite/physiology , Blood Glucose/metabolism , Blood Pressure/physiology , Leptin/metabolism , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/metabolism , Analysis of Variance , Animals , Appetite/drug effects , Blood Glucose/drug effects , Blood Pressure/drug effects , Body Weight/drug effects , Body Weight/physiology , Eating/drug effects , Eating/physiology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Immunohistochemistry , Insulin/blood , Leptin/pharmacology , Male , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Receptors, Leptin/genetics , Telemetry
4.
J Hypertens ; 29(4): 758-62, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21311343

ABSTRACT

OBJECTIVE: Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. METHODS: Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 µg/kg per min for 10 days. RESULTS: High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). CONCLUSION: These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.


Subject(s)
Appetite , Blood Pressure , Dietary Fats/administration & dosage , Leptin/administration & dosage , Animals , Body Weight , Feeding Behavior , Injections, Intraventricular , Rats , Rats, Sprague-Dawley
5.
J Hypertens ; 28(7): 1466-70, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20442673

ABSTRACT

METHOD: We examined the role of central nervous system (CNS) endogenous melanocortin 3/4 receptors (MC3/4R) activity in controlling cardiovascular and metabolic functions in Sprague Dawley rats fed a high-fat diet (n = 6) for 10 months compared with rats fed a standard chow (normal fat, n = 8) starting at 3 weeks of age. RESULTS: At 7 months of age, high-fat rats were heavier (473 +/- 3 vs. 424 +/- 7 g), consumed more calories with larger, less frequent meals and had reduced respiratory quotient (RQ) compared with normal-fat rats. After 10 months on the diets, arterial and venous catheters were implanted for measurement of mean arterial pressure (MAP) and heart rate (HR) 24-h/day and i.v. (intravenous) infusions, and a 21G steel cannula was placed in the lateral ventricle for intracerebroventricular (ICV) infusions. High-fat rats were heavier (528 +/- 14 vs. 477 +/- 11 g) with increased visceral adiposity and significantly higher MAP (108 +/- 3 vs. 102 +/- 1 mmHg). After a 5-day control period, the rats were infused with a MC3/4R antagonist (SHU-9119, 1 nmol/h, ICV) for 10 days followed by a 5-day recovery period. SHU-9119 infusion for 10 days increased caloric intake significantly more in high-fat rats (159 +/- 19 vs. 64 +/- 8 kcal). Despite increasing caloric intake and rapid weight gain, MC3/4R antagonism reduced MAP more in high-fat diet compared with normal-fat rats (-7.9 +/- 0.3 vs. -4.7 +/- 1.3 mmHg, average reduction of last 4 days of blockade). CONCLUSION: These observations suggest that a high-fat diet increases endogenous activity of the CNS MC3/4R and that an intact MC3/4 appears to play an important role in linking increased blood pressure with diet-induced obesity.


Subject(s)
Appetite , Blood Pressure/physiology , Obesity/metabolism , Obesity/physiopathology , Receptor, Melanocortin, Type 3/antagonists & inhibitors , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Animals , Appetite/drug effects , Azaperone , Dietary Fats/adverse effects , Energy Intake , Heart Rate/physiology , Hypertension/complications , Melanocyte-Stimulating Hormones , Obesity/blood , Random Allocation , Rats , Rats, Sprague-Dawley , Weight Gain
6.
Clin Exp Pharmacol Physiol ; 35(1): 29-34, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18047624

ABSTRACT

1. The aim of the present study was to determine whether inhibition of dipeptidyl peptidase IV (DPP IV) elevates arterial blood pressure and whether any such effect is dependent on genetic background, the sympathetic nervous system and Y(1) receptors. The rationale behind this study was that: (i) neuropeptide (NP) Y(1-36) and peptide YY(1-36) (PYY(1-36)) are endogenous Y(1) receptor agonists and are metabolised by DPP IV to NPY(3-36) and PYY(3-36), which are not Y(1) but rather selective Y(2) receptor agonists; (ii) Y(1) receptors mediate vasoconstriction, whereas Y(2) receptors have little effect on vascular tone; (iii) vaso-constrictor effect of the Y(1) receptor is enhanced in spontaneously hypertensive rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats; and (iv) NPY(1-36) is released from sympathetic nerve terminals. 2. We examined the effects of acute administration of 3-N-[(2S,3S)-2-amino-3-methylpentanoyl]-1,3-thiazolidine (P32/98; a DPP IV inhibitor) on arterial blood pressure in anaesthetized adult SHR and WKY rats in the absence and presence of either captopril, hydralazine or chlorisondamine to lower basal mean arterial blood pressure (MABP) by different mechanisms (inhibition of angiotensin-converting enzyme, direct vasodilation and ganglionic blockade, respectively). 3. In naïve SHR with severely elevated basal blood pressures (MABP = 176 +/- 3 mmHg; n = 4), i.v. boluses (1, 3 and 10 mg/kg) of P32/98 did not affect blood pressure. 4. When basal blood pressure was reduced by pretreatment of SHR with either captopril (30 mg/kg, i.v.; MABP = 116 +/- 3 mmHg; n = 9) or hydralazine (5 mg/kg, i.p.; MABP = 84 +/- 3 mmHg; n = 7), P32/98 (1, 3 and 10 mg/kg) caused significant dose-related increases in arterial blood pressure (4 +/- 2, 10 +/- 2 and 12 +/- 3 mmHg in the captopril-pretreated group, respectively (P < 0.01); 5 +/- 2, 8 +/- 3 and 11 +/- 4 mmHg in the hydralazine-pretreated group, respectively (P < 0.01)). 5. The increases in arterial blood pressure induced by P32/98 in captopril- or hydralazine-pretreated SHR were entirely blocked by pretreatment with the selective Y(1) receptor antagonist N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-d-arginine amide (BIBP 3226; 6 mg/kg per h). 6. When basal blood pressure was reduced in SHR by pretreatment with chlorisondamine (10 mg/kg, s.c.; MABP = 108 +/- 4 mmHg; n = 7), inhibition of DPP IV with P32/98 did not affect arterial blood pressure. Basal heart rate in chlorisondamine-treated SHR was significantly reduced compared with naïve SHR, captopril-pretreated SHR and hydralazine-pretreated SHR, indicating effectiveness of ganglionic blockade. 7. Unlike the results in genetically hypertensive animals, in normotensive WKY rats pretreated with captopril (30 mg/kg, i.v.; MABP = 81 +/- 4 mmHg; n = 6), or hydralazine (5 mg/kg, i.p.; MABP = 63 +/- 4 mmHg; n = 4) or chlorisondamine (10 mg/kg, s.c.; MABP = 63 +/- 4 mmHg; n = 5), P32/98 did not affect arterial blood pressure. 8. We conclude that, in genetically susceptible animals, inhibition of DPP IV increases arterial blood pressure via Y(1) receptors when elevated blood pressure is reduced with antihypertensive drugs provided that the sympathetic nervous system is functional. The results suggest vigilance because DPP IV inhibitors are used more widely in hypertensive patients treated with antihypertensive drugs.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypertension/drug therapy , Pentanoic Acids/pharmacology , Receptors, Neuropeptide Y/drug effects , Thiazolidines/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antihypertensive Agents/therapeutic use , Arginine/analogs & derivatives , Arginine/pharmacology , Captopril/pharmacology , Chlorisondamine/pharmacology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Ganglionic Blockers/pharmacology , Hydralazine/pharmacology , Hypertension/enzymology , Hypertension/genetics , Hypertension/physiopathology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Neuropeptide Y/metabolism , Vasodilator Agents/pharmacology
7.
J Pharmacol Exp Ther ; 317(3): 1330-6, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16537795

ABSTRACT

The purpose of this study was to test the hypothesis that renal sympathetic nerves modulate angiotensin II-induced renal vasoconstriction in kidneys from genetically hypertensive rats via Y1 receptors activating the Gi pathway. In isolated, perfused kidneys from spontaneously hypertensive rats, the naturally occurring renal sympathetic cotransmitter neuropeptide Y at 6 nM enhanced angiotensin II (0.3 nM)-induced changes in perfusion pressure by 47 +/- 7 mm Hg, and this effect was inhibited by BIBP3226 [N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-D-arginine amide)], a selective Y1 receptor antagonist (1 microM). We next examined whether periarterial nerve stimulation (5 Hz) enhances renal vascular responses to a physiological level of angiotensin II (100 pM). Kidneys were pretreated with prazosin (a selective alpha1-adrenoceptor antagonist) to block nerve stimulation-induced changes in perfusion pressure. In kidneys from spontaneously hypertensive rats, but not normotensive rats, periarterial nerve stimulation significantly augmented angiotensin II-induced changes in perfusion pressure (177 +/- 26% of response in absence of stimulation). BIBP3226, but not rauwolscine (a selective alpha2-adrenoceptor antagonist), abolished periarterial nerve stimulation-induced enhancement of angiotensin II-mediated renal vasoconstriction. Pretreatment of hypertensive animals with pertussis toxin 3 days prior to kidney perfusion significantly (p < 0.000001) decreased mean blood pressure (203 +/- 2 versus 145 +/- 6 mm Hg in nonpretreated versus pertussis toxin-pretreated spontaneously hypertensive rats) and abolished periarterial nerve stimulation-induced enhancement of angiotensin II-mediated renal vasoconstriction. We conclude that, in spontaneously hypertensive rats but not normotensive rats, sympathetic nerve stimulation enhances renal vascular responses to physiological levels of angiotensin II via a mechanism mainly involving Y1 receptors coupled to Gi proteins.


Subject(s)
Angiotensin II/pharmacology , Hypertension/physiopathology , Kidney , Sympathetic Nervous System/physiology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Electric Stimulation , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , In Vitro Techniques , Kidney/blood supply , Kidney/drug effects , Kidney/innervation , Kidney/metabolism , Male , Perfusion , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Neuropeptide Y/metabolism , Renal Circulation/drug effects , Sympathetic Nervous System/drug effects
8.
Hypertension ; 47(3): 545-51, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16365188

ABSTRACT

The Gi pathway augments renal vasoconstriction induced by angiotensin II in spontaneously hypertensive but not normotensive Wistar-Kyoto rats. Because the Gi-coupled pancreatic polypeptide (PP)-fold peptide receptors Y1 and Y2 are expressed in kidneys and are activated by endogenous PP-fold peptides, we tested the hypothesis that these receptors regulate angiotensin II-induced renal vasoconstriction in kidneys from hypertensive but not normotensive rats. A selective Y1-receptor agonist [(Leu31,Pro34)-neuropeptide Y; 6 to 10 nmol/L] greatly potentiated angiotensin II-induced changes in perfusion pressure in isolated, perfused kidneys from hypertensive but not normotensive rats. A selective Y2-receptor agonist (peptide YY(3-36); 6 nM) only slightly potentiated angiotensin II-induced renal vasoconstriction and only in kidneys from hypertensive rats. Neither the Y1-receptor nor the Y2-receptor agonist increased basal perfusion pressure. BIBP3226 (1 micromol/L, highly selective Y1-receptor antagonist) and BIIE0246 (1 micromol/L, highly selective Y2-receptor antagonist) completely abolished potentiation by (Leu31,Pro34)-neuropeptide Y and peptide YY(3-36), respectively. Y1-receptor and Y2-receptor mRNA and protein levels were expressed in renal microvessels and whole kidneys, but the abundance was similar in kidneys from hypertensive and normotensive rats. Both Y1-receptor-induced and Y2-receptor-induced potentiation of angiotensin II-mediated renal vasoconstriction was completely abolished by pretreatment with pertussis toxin (30 microg/kg IV, blocks Gi proteins). These data indicate that, in kidneys from genetically hypertensive but not normotensive rats, Y1-receptor activation markedly enhances angiotensin II-mediated renal vasoconstriction by a mechanism involving Gi. Although Y2 receptors can also potentiate angiotensin II-mediated renal vasoconstriction via Gi, the effect is modest compared with Y1 receptors. These findings may have important implications for the etiology of genetic hypertension.


Subject(s)
Angiotensin II/pharmacology , Hypertension/physiopathology , Kidney/blood supply , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide/metabolism , Vasoconstriction , Animals , Blood Vessels/drug effects , Blotting, Western , Hypertension/genetics , In Vitro Techniques , Male , Neuropeptide Y/analogs & derivatives , Neuropeptide Y/pharmacology , Peptide Fragments , Peptide YY/pharmacology , Perfusion , Pressure , RNA, Messenger/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide Y/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...