Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 115(41): 11950-63, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-21879744

ABSTRACT

We consider the state-of-the-art capabilities and future perspectives of electron-spin triangulation by high-field/high-frequency dipolar electron paramagnetic resonance (EPR) techniques designed for determining the three-dimensional structure of large supra-molecular complexes dissolved in disordered solids. These techniques combine double site-directed spin labeling (SDSL) with orientation-resolving pulsed electron-electron double resonance (PELDOR) spectroscopy. In particular, we appraise the prospects of angular triangulation, which extends the more familiar distance triangulation. As a model case for spin-labeled proteins, the three-dimensional structures of two nitroxide biradicals with rather stiff bridging blocks and deuterated nitroxide headgroups have been derived. To this end we applied 95 GHz high-field electron dipolar EPR spectroscopy with the microwave pulse-sequence configurations for PELDOR and relaxation-induced dipolar modulation enhancement (RIDME). Various specific spectroscopic strategies are discussed to overcome the problems of overlapping spectra of the chemically identical nitroxide labels when attached to macromolecular systems. We conclude that due to the high detection sensitivity and spectral resolution the combination of SDSL with high-field RIDME/PELDOR stands out as an extremely powerful tool for 3D structure determination of large disordered systems. The approach compares favorably with other structure-determining magnetic-resonance methods. This holds true both for stable and transient radical-pair states. Angular constraints are provided in addition to distance constraints obtained for the same sample. Thereby, the number of necessary distance constraints is strongly reduced. Since each measurement of a distance constraint requires an additional doubly spin-labeled sample, the reduction of necessary distance constraints is another appealing aspect of orientation-resolving EPR spin triangulation for protein structure determination.


Subject(s)
Electron Spin Resonance Spectroscopy , Nitric Oxide/chemistry , Protein Structure, Tertiary , Proteins/chemistry , Spin Labels
2.
J Phys Chem B ; 114(50): 16894-901, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21090818

ABSTRACT

Reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides R-26 exhibit changes in the recombination kinetics of the charge-separated radical-pair state, P(·+) Q(A)(·-), composed of the dimeric bacteriochlorophyll donor P and the ubiquinone-10 acceptor Q(A), depending on whether the RCs are cooled to cryogenic temperatures in the dark or under continuous illumination (Kleinfeld et al. Biochemistry 1984, 23, 5780-5786). Structural changes near redox-active cofactors have been postulated to be responsible for these changes in kinetics and to occur in the course of light-induced oxidation and reduction of the cofactors thereby assuring a high quantum yield. Here we investigated such potential light-induced structural changes, associated with the formation of P(·+) Q(A)(·-), via pulsed electron-nuclear double resonance (ENDOR) at Q-band (34 GHz) and pulsed electron-electron double resonance (PELDOR) at W-band (95 GHz). Two types of light excitation have been employed for which identical RC samples were prepared: (a) one sample was frozen in the dark and then illuminated to generate transient P(·+) Q(A)(·-), and (b) one was frozen under illumination which resulted in both trapped and transient P(·+) Q(A)(·-) at 80 K. The hyperfine interactions between Q(A)(·-) and the protein were found to be the same in RCs frozen in the dark as in RCs frozen under illumination. Furthermore, these interactions are completely consistent with those observed in RC crystals frozen in the dark. Thus, QA remains in its binding site with the same position and orientation upon reduction. This conclusion is consistent with the result of our orientation-resolving PELDOR experiments on transient P(·+) Q(A)(·-) radical pairs. However, these findings are incompatible with the recently proposed ~60° reorientation of Q(A) upon its photoreduction, as deduced from an analysis of Q-band quantum-beat oscillations (Heinen et al. J. Am. Chem. Soc. 2007, 129, 15935-15946). Such a large reorientation appears improbable, and our objections against this proposition are substantiated here in detail. Our results show that Q(A) is initially in an orientation that is favorable for its light-driven reduction. This diminishes the reorganization requirements for fast electron reduction and high quantum efficiency.


Subject(s)
Electrons , Light , Photosynthetic Reaction Center Complex Proteins/chemistry , Quinones/chemistry , Rhodobacter sphaeroides/chemistry , Electron Spin Resonance Spectroscopy , Electron Transport , Free Radicals/chemistry , Kinetics , Oxidation-Reduction , Quantum Theory , Rhodobacter sphaeroides/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...