Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647191

ABSTRACT

PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method. THEORY AND METHODS: Traditional and DL-based MR image reconstruction approaches operate in fundamentally different ways: Traditional methods solve a system of equations derived from the image data whereas DL methods use data/target pairs to learn a generalizable reconstruction model. Two sets of head coil profiles were evaluated: (1) 8-channel and (2) 32-channel geometries. A DL model was compared to conjugate gradient SENSE (CG-SENSE) and L1-wavelet compressed sensing (CS) through quantitative metrics and visual assessment as coil overlap was increased. RESULTS: Results were generally consistent between experiments. As coil overlap increased, there was a significant (p < 0.001) decrease in performance in most cases for all methods. The decrease was most pronounced for CG-SENSE, and the DL models significantly outperformed (p < 0.001) their non-DL counterparts in all scenarios. CS showed improved robustness to coil overlap and signal-to-noise ratio (SNR) versus CG-SENSE, but had quantitatively and visually poorer reconstructions characterized by blurriness as compared to DL. DL showed virtually no change in performance across SNR and very small changes across coil overlap. CONCLUSION: The DL image reconstruction method produced images that were robust to coil overlap and of higher quality than CG-SENSE and CS. This suggests that geometric coil design constraints can be relaxed when using DL reconstruction methods.

2.
Quant Imaging Med Surg ; 13(12): 7680-7694, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106259

ABSTRACT

Background: Radiomics features hold significant value as quantitative imaging biomarkers for diagnosis, prognosis, and treatment response assessment. To generate radiomics features and ultimately develop signatures, various factors can be manipulated, including image discretization parameters (e.g., bin number or size), convolutional filters, segmentation perturbation, or multi-modality fusion levels. Typically, only one set of parameters is employed, resulting in a single value or "flavour" for each radiomics feature. In contrast, we propose "tensor radiomics" (TR) where tensors of features calculated using multiple parameter combinations (i.e., flavours) are utilized to optimize the creation of radiomics signatures. Methods: We provide illustrative instances of TR implementation in positron emission tomography-computed tomography (PET-CT), magnetic resonance imaging (MRI), and CT by leveraging machine learning (ML) and deep learning (DL) methodologies, as well as reproducibility analyses: (I) to predict overall survival (OS) in lung cancer (CT) and head and neck cancer (PET-CT), TR was employed by varying bin sizes. This approach involved use of a hybrid deep neural network called 'TR-Net' and two ML-based techniques for combining different flavours. (II) TR was constructed by incorporating different segmentation perturbations and various bin sizes to classify the response of late-stage lung cancer to first-line immunotherapy using CT images. (III) In MRI of glioblastoma (GBM), TR was implemented to generate multi-flavour radiomics features, enabling enhanced analysis and interpretation. (IV) TR was employed via multiple PET-CT fusions in head and neck cancer. Flavours based on different fusions were created using Laplacian pyramids and wavelet transforms. Results: Our findings demonstrated that TR outperformed conventional radiomics features in lung cancer CT and head and neck cancer PET-CT images, significantly enhancing OS prediction accuracy. TR also improved classification of lung cancer response to therapy and exhibited notable advantages in reproducibility compared to single-flavour features in MR imaging of GBM. Moreover, in head and neck cancer, TR through multiple PET-CT fusions exhibited improved performance in predicting OS. Conclusions: We conclude that the proposed TR paradigm has significant potential to improve performance in different medical imaging tasks. By incorporating multiple flavours of radiomics features, TR overcomes limitations associated with individual features and shows promise in enhancing prognostic capabilities in clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...