Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Chem ; 440: 138255, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38150904

ABSTRACT

This study focuses on the fate of chlordecone (CLD) during cooking processes. Neat CLD was subjected to thermogravimetric analysis, which revealed that the vast majority of the compound (79 %) was vaporised at temperatures between 55 and 245 °C. In order to monitor the behaviour of CLD during cooking processes, a QuEChERS extraction protocol was optimised for vegetable cooking oil and a heating kinetics experiment was conducted at 195 °C on CLD-spiked cooking oil. The results showed a strong decrease in CLD over time and, for the first time to our knowledge, transformation of CLD into chlordecol. Finally, a comparison was conducted between the cooking of uncured pork with and without vegetable oil. The use of vegetable oil led to a significant decrease in CLD content, but revealed that a fraction of the CLD transferred into the cooking oil. This study provides data that shed light on the fate of CLD during cooking.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Chlordecone/analysis , Insecticides/analysis , Soil Pollutants/analysis , Cooking , Plant Oils/analysis
2.
Food Chem ; 402: 134267, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36122475

ABSTRACT

Characterising pesticide residues from a qualitative and quantitative point of view is key to both risk assessment in the framework of pesticide approval and risk management. In the European Union (EU), these concerns are addressed during the evaluation of active substances at the European level prior to marketing authorisation. In the framework of this review, we will focus on one specific item of the residue section, namely the effect of process (industrial or domestic transformation of the raw commodities) on the nature of the residue in food. A limited number of hydrolysis conditions defined by three parameters (temperature, pH and time) are set to be "representative of the most widely used industrial and domestic food processing technologies". These hydrolysis conditions, however, do not cover processes at temperatures higher than 120 °C, such as cooking with a conventional oven or in a pan, frying or using a microwave oven.


Subject(s)
Pesticide Residues , Pesticides , Pesticide Residues/analysis , Cooking , Food Contamination/analysis , Food Handling
3.
Environ Pollut ; 308: 119721, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35809711

ABSTRACT

Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.


Subject(s)
Oryzias , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Ecosystem , Larva , Microplastics , Plastics/toxicity , Reproduction , Swimming , Water Pollutants, Chemical/analysis , Zebrafish
4.
Chemosphere ; 286(Pt 3): 131743, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34388434

ABSTRACT

Monitoring the vast number of micropollutants in the environment by using comprehensive chemical screening is a major analytical challenge. The aim of this study was to evaluate a comprehensive analysis method for screening purposes of fish muscle samples by comparing sample preparation methods for a broad range of mid-to non-polar contaminants. Five extraction and three clean-up methods were evaluated for the analysis of 60 compounds with a log Kow range between 0.8 and 8.3 in fish. Both fresh and freeze-dried muscle tissue and extraction sodium sulphate blanks were included to assess recoveries and matrix effects. The performance of the different methods was evaluated using both comprehensive target and nontarget analysis using high resolution mass spectrometry (HRMS). The results showed that open-column and ultrasonication extractions (recoveries mostly between 20 and 160 %) resulted in higher recoveries than accelerated solvent extraction (ASE) (recoveries mostly between 20 and 80 %) and bead mixer homogenization extractions (recoveries between 0 and 50 % for the whole Kow range). Multilayer silica was the clean-up method resulting in the lowest matrix effects and highest recoveries, however some compounds (mostly pesticides) were denatured under the acidic conditions used. The convenient and time efficient ultrasonication extraction followed by deactivated silica clean-up proved to be promising for both target and nontarget approaches. The large difference in recoveries and number of detected peaks using target and nontarget approaches between fresh and freeze-dried fish seen for all methods calls for careful consideration, and further studies are needed to improve performance for screening of mid-to non-polar compounds in freeze-dried fish.


Subject(s)
Pesticides , Solid Phase Extraction , Animals , Fishes , Gas Chromatography-Mass Spectrometry , Mass Spectrometry
5.
Sci Data ; 8(1): 223, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429429

ABSTRACT

Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments.


Subject(s)
Benchmarking , Drinking Water/analysis , Mass Spectrometry , Algorithms , Laboratories , Workflow
6.
J Hazard Mater ; 415: 125626, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33740727

ABSTRACT

Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
7.
Environ Pollut ; 276: 116701, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33621737

ABSTRACT

Since humans spend more than 90% of their time in indoor environments, indoor exposure can be an important non-dietary pathway to hazardous organic contaminants. It is thus important to characterize the chemical composition of indoor dust to assess the total contaminant exposure and estimate human health risks. The aim of this investigation was to perform a comprehensive chemical characterization of indoor dust. First, the robustness of an adopted extraction method using ultrasonication was evaluated for 85 target compounds. Thereafter, a workflow combining target analysis, suspect screening analysis (SSA) and nontarget analysis (NTA) was applied to dust samples from different indoor environments. Chemical analysis was performed using both gas chromatography and liquid chromatography coupled with high resolution mass spectrometry. Although suppressing matrix effects were prominent, target analysis enabled the quantification of organophosphate/brominated flame retardants (OPFRs/BFRs), liquid crystal monomers (LCMs), toluene diisocyanate, bisphenols, pesticides and tributyl citrate. The SSA confirmed the presence of OPFRs but also enabled the detection of polyethylene glycols (PEGs) and phthalates/parabens. The combination of hierarchical cluster analysis and scaled mass defect plots in the NTA workflow confirmed the presence of the above mentioned compounds, as well as detect other contaminants such as tetrabromobisphenol A, triclocarban, diclofenac and 3,5,6-trichloro-2-pyridinol, which were further confirmed using pure standards.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Air Pollution, Indoor/analysis , Dust , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Humans , Organophosphates/analysis
8.
Ecotoxicol Environ Saf ; 208: 111665, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396175

ABSTRACT

Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.


Subject(s)
Aquatic Organisms/drug effects , Life Cycle Stages/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/growth & development , Ecosystem , Ecotoxicology , Islands , Microplastics/chemistry , Scyphozoa/drug effects , Scyphozoa/growth & development , Sea Urchins/drug effects , Sea Urchins/growth & development , Water Pollutants, Chemical/chemistry
9.
Environ Pollut ; 265(Pt A): 114834, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32454383

ABSTRACT

During a fire event, potentially hazardous chemicals are formed from the combustion of burning materials and are released to the surrounding environment, both via gas and soot particles. The aim of this investigation was to study if firefighting techniques influence the emission of chemicals in gas phase and soot particles. Five full-scale fire tests were extinguished using four different firefighting techniques. A nontarget chemical analysis approach showed that important contaminants in gas and soot separating the different tests were brominated flame retardants (BFRs), organophosphate flame retardants (OPFR), polycyclic aromatic hydrocarbons (PAHs) and linear hydrocarbons. Reproducibility was evaluated by a field replicate test and it was determined that the temperature curve during the event had a bigger impact on the released chemicals than the firefighting technique used. However, despite fire intensity being a confounding factor, multivariate statistics concluded that water mist with additive resulted in less BFR emissions compared to foam extinguishing. The analysis also showed that the conventional spray nozzle method released more PAHs compared with the water mist method. The comprehensive chemical analysis of gas and soot released during fire events was able to show that different firefighting techniques influenced the release of chemicals.


Subject(s)
Fires , Flame Retardants , Polycyclic Aromatic Hydrocarbons , Reproducibility of Results , Soot
10.
Environ Sci Technol ; 54(1): 245-254, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31789512

ABSTRACT

Aqueous film-forming foams (AFFFs) are widely used to extinguish liquid fires due to their film-forming properties. AFFF formulation historically contains per- and polyfluoroalkyl substances (PFASs) that can be very persistent and pose a health risk to biota and humans. Detailed analysis of the chemical composition of AFFFs can provide a better understanding on the potential environmental impact of the ingredients. In this study, a novel workflow combining target analysis, nontarget screening analysis (NTA), total fluorine (TF) analysis, and inorganic fluoride (IF) analysis was applied to disclose the chemical composition of 24 foams intended for liquid fires. Foams marketed as containing PFASs as well as fluorine-free foams were included. By comparing the sum of targeted PFASs and total organofluorine concentrations, a mass balance of known and unknown organofluorine could be calculated. Known organofluorine accounted for <1% in most fluorine-containing AFFFs, and it was confirmed that the foams marketed as fluorine-free did not contain measurable amounts of organofluorine substances. Five fluorinated substances were tentatively identified, and non-fluorinated zwitterionic betaine compounds, which are considered to be replacement substances for PFASs, were tentatively identified in the organofluorine-free foams.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorides , Fluorine , Humans , Workflow
11.
Forensic Sci Int ; 279: 88-95, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28854352

ABSTRACT

Forty one samples of herbal spices intended to be introduced into the European market and seized by the French customs were analysed with high-field 1H NMR. Nine synthetic cannabinoids (MAM-2201, JWH-073, JWH-210, JWH-122, JWH-081, JWH-250, UR-144, XLR-11 and AKB-48-5F) were detected and quantified. The ability of a compact benchtop low-field NMR spectrometer for a rapid screening of the content of herbal blends was then successfully explored for the first time. Even if low-field 1H NMR spectra are much less resolved than high-field spectra, we demonstrate that they provide valuable clues on the chemical structures of synthetic cannabinoids with the detection of some typical signals.


Subject(s)
Cannabinoids/chemistry , Designer Drugs/chemistry , Magnetic Resonance Spectroscopy/methods , Adamantane/analogs & derivatives , Adamantane/chemistry , Anisoles/chemistry , Humans , Indazoles/chemistry , Indoles/chemistry , Naphthalenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...