Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Inherit Metab Dis ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706107

ABSTRACT

Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.

2.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712143

ABSTRACT

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

3.
Cancers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230781

ABSTRACT

Sphingolipids play a key structural role in cellular membranes and/or act as signaling molecules. Inherited defects of their catabolism lead to lysosomal storage diseases called sphingolipidoses. Although progress has been made toward a better understanding of their pathophysiology, several issues still remain unsolved. In particular, whether lysosphingolipids, the deacylated form of sphingolipids, both of which accumulate in these diseases, are simple biomarkers or play an instrumental role is unclear. In the meanwhile, evidence has been provided for a high risk of developing malignancies in patients affected with Gaucher disease, the most common sphingolipidosis. This article aims at analyzing the potential involvement of lysosphingolipids in cancer. Knowledge about lysosphingolipids in the context of lysosomal storage diseases is summarized. Available data on the nature and prevalence of cancers in patients affected with sphingolipidoses are also reviewed. Then, studies investigating the biological effects of lysosphingolipids toward pro or antitumor pathways are discussed. Finally, original findings exploring the role of glucosylsphingosine in the development of melanoma are presented. While this lysosphingolipid may behave like a protumorigenic agent, further investigations in appropriate models are needed to elucidate the role of these peculiar lipids, not only in sphingolipidoses but also in malignant diseases in general.

4.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
5.
Gut ; 71(4): 807-821, 2022 04.
Article in English | MEDLINE | ID: mdl-33903148

ABSTRACT

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism
8.
Cancers (Basel) ; 12(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085512

ABSTRACT

The roles of ceramide and its catabolites, i.e., sphingosine and sphingosine 1-phosphate, in the development of malignancies and the response to anticancer regimens have been extensively described. Moreover, an abundant literature points to the effects of glucosylceramide synthase, the mammalian enzyme that converts ceramide to ß-glucosylceramide, in protecting tumor cells from chemotherapy. Much less is known about the contribution of ß-glucosylceramide and its breakdown products in cancer progression. In this chapter, we first review published and personal clinical observations that report on the increased risk of developing cancers in patients affected with Gaucher disease, an inborn disorder characterized by defective lysosomal degradation of ß-glucosylceramide. The previously described mechanistic links between lysosomal ß-glucosylceramidase, ß-glucosylceramide and/or ß-glucosylphingosine, and various hallmarks of cancer are reviewed. We further show that melanoma tumor growth is facilitated in a Gaucher disease mouse model. Finally, the potential roles of the ß-glucosylceramidase protein and its lipidic substrates and/or downstream products are discussed.

9.
Int J Mol Sci ; 20(21)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661765

ABSTRACT

We report the case of a boy who was diagnosed with mucopolysaccharidosis (MPS) VII at two weeks of age. He harbored three missense ß-glucuronidase (GUSB) variations in exon 3: two novel, c.422A>C and c.424C>T, inherited from his mother, and the rather common c.526C>T, inherited from his father. Expression of these variations in transfected HEK293T cells demonstrated that the double mutation c.422A>C;424C>T reduces ß-glucuronidase enzyme activity. Enzyme replacement therapy (ERT), using UX003 (vestronidase alfa), was started at four months of age, followed by a hematopoietic stem cell allograft transplantation (HSCT) at 13 months of age. ERT was well tolerated and attenuated visceromegaly and skin infiltration. After a severe skin and gut graft-versus-host disease, ERT was stopped six months after HSCT. The last follow-up examination (at the age of four years) revealed a normal psychomotor development, stabilized growth curve, no hepatosplenomegaly, and no other organ involvement. Intriguingly, enzyme activity had normalized in leukocytes but remained low in plasma. This case report illustrates: (i) The need for an early diagnosis of MPS, and (ii) the possible benefit of a very early enzymatic and/or cellular therapy in this rare form of lysosomal storage disease.


Subject(s)
Enzyme Replacement Therapy , Glucuronidase/genetics , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/therapy , Combined Modality Therapy , Glucuronidase/blood , Glucuronidase/therapeutic use , Glucuronidase/urine , HEK293 Cells , Hematopoietic Stem Cell Transplantation/adverse effects , Hepatomegaly/drug therapy , Humans , Infant, Newborn , Leukocytes/enzymology , Leukocytes/metabolism , Male , Mucopolysaccharidosis VII/blood , Mucopolysaccharidosis VII/diagnosis , Mutation , Splenomegaly/drug therapy
10.
JIMD Rep ; 46(1): 11-15, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31240149

ABSTRACT

We describe the case of a young woman, from a consanguineous family, affected by adult Refsum disease (ARD, OMIM#266500). ARD is a rare peroxisomal autosomal recessive disease due to deficient alpha-oxidation of phytanic acid (PA), a branched-chain fatty acid. The accumulation of PA in organs is thought to be responsible for disease symptoms. The patient presented only bilateral shortening of metatarsals and has been treated with a low-PA diet. She is homoallelic for the c.135-2A > G mutation of PHYH, and she married her first cousin carrying the same mutation. She was pregnant seven times and had two homozygous girls. Due to a potential exacerbation of the disease during the third trimester of pregnancy, her weight and plasma PA levels were monitored. No specific events were noticed for the mother during the pregnancies and postpartum periods. This case also raised the question of potential exposure to PA (and its subsequent toxicity) of a homozygous fetus in a homozygous mother. Despite modestly elevated plasma concentrations of PA at birth (<30 µmol/L), the two affected girls did not present any specific sign of ARD and have so far developed normally. As only a few determinations of plasma PA levels in the mother could be performed during pregnancies, showing mild elevations (<350 µmol/L), it remains difficult to conclude as to a possible transplacental crossing of PA.

11.
Clin Chim Acta ; 495: 457-466, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31128082

ABSTRACT

Ceramides are membrane lipids implicated in the regulation of numerous biological functions. Recent evidence suggests that specific subsets of molecular species of ceramide may play distinct physiological roles. The importance of this family of molecules in vertebrates is witnessed by the deleterious consequences of genetic alterations in ceramide metabolism. This brief review summarizes the clinical presentation of human disorders due to the deficiency of enzymes involved either in the biosynthesis or the degradation of ceramides. Information on the possible underlying pathophysiological mechanisms is also provided, based on knowledge gathered from animal models of these inherited rare conditions. When appropriate, tools for chemical and molecular diagnosis of these disorders and therapeutic options are also presented.


Subject(s)
Ceramides/metabolism , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Animals , Ceramides/biosynthesis , Humans
12.
Pract Lab Med ; 13: e00114, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30623007

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is the less rare and severe genetic disease among the European population. Biochemical diagnosis of CF is based on the demonstration of increased chloride concentration in sweat samples, obtained during the sweat test (ST). WynSep developed a capillary electrophoresis with contactless conductivity detection (CE-C4D) able to measure sweat chloride with a low sample volume. We evaluated the clinical feasibility of this device in a cohort of patients suspected of CF, in comparison with the common coulometric method (ChloroChek chloridometer). METHODS: We determined sweat chloride concentration of 65 samples from patients referred to our institution to undergo a sweat test. Each sample was submitted to coulometric method first, then WynSep-CE, with or without internal standard (IS) subject to sufficient volume sample. RESULTS: A total of 53 samples were analysed by both coulometric and WynSep-CE (using IS) methods. The method validation showed comparable analytical performances for both methods; no false positive or false negative was recorded. The two methods showed a high correlation (r = 0.993, p < 0.001) and a close agreement was demonstrated by two different statistical tests (Bland-Altman and Passing-Bablok). CONCLUSIONS: WynSep-CE is an accurate, fast, easy-to-use and an appropriate method for CF diagnosis.

13.
Biochim Biophys Acta ; 1851(8): 1040-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25660725

ABSTRACT

Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.


Subject(s)
Glycoside Hydrolases/deficiency , Lipid Metabolism Disorders/metabolism , Lipid Metabolism/genetics , Nervous System Diseases/metabolism , Sphingolipids/metabolism , Animals , Gene Expression , Glycoside Hydrolases/genetics , Humans , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/pathology , Mice , Mutation , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Rats , Sphingolipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...