Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172048, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38580125

ABSTRACT

The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.


Subject(s)
Agriculture , Nanostructures , Oxides , Agriculture/methods , Metals , Food Packaging , Metal Nanoparticles/toxicity
2.
Nanomaterials (Basel) ; 11(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401682

ABSTRACT

Development of paper-based sensors that do not suffer with humidity interference is desirable for practical environmental applications. In this work, a laser processing method was reported to effectively modulate the cross-sensitivity to humidity of ZnO-based UV (Ultraviolet) sensors printed on paper substrate. The results reveal that the laser induced zinc oxide (ZnO) surface morphology contributes to the super-hydrophobicity of the printed ZnO nanoparticles, reducing humidity interference while enhancing UV sensitivity. Herein, this conducted research highlights for the first time that laser processing is an attractive choice that reduces the cross-sensitivity to water vapor in the UV sensing response of ZnO-based devices printed on paper, paving the way to low-cost and sophisticated paper-based sensors.

3.
ACS Appl Mater Interfaces ; 11(6): 6257-6266, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30652478

ABSTRACT

Recently, multifunctional devices printed on flexible substrates, with multisensing capability, have found new demand in practical fields of application, such as wearable electronics, soft robotics, interactive interfaces, and electronic skin design, revealing the vital importance of precise control of the fundamental properties of metal oxide nanomaterials. In this paper, a novel low-cost and scalable processing strategy is proposed to fabricate all-printed multisensing devices with UV- and gas-sensing capabilities. This undertaken approach is based on the hierarchical combination of the screen-printing process and laser irradiation post-treatment. The screen-printing is used for the patterning of silver interdigitated electrodes and the active layer based on anatase TiO2 nanoparticles, whereas the laser processing is utilized to fine-tune the UV and ethanol-sensing properties of the active layer. Different characterization techniques demonstrate that the laser fluence can be adjusted to optimize the morphology of the TiO2 film by increasing the contribution from volume porosity, to improve its electrical properties and enhance its UV photoresponse and ethanol-sensing characteristics at room temperature. Furthermore, results of the UV and ethanol-sensing investigation show that the optimized UV and ethanol sensors have good repeatability, relatively fast response/recovery times, and excellent mechanical flexibility.

4.
Sensors (Basel) ; 17(8)2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28800063

ABSTRACT

This paper describes the fabrication and the characterization of an original example of a miniaturized resistive-type humidity sensor, printed on flexible substrate in a large-scale manner. The fabrication process involves laser ablation for the design of interdigitated electrodes on PET (Poly-Ethylene Terephthalate) substrate and a screen-printing process for the deposition of the sensitive material, which is based on TiO2 nanoparticles. The laser ablation process was carefully optimized to obtain micro-scale and well-resolved electrodes on PET substrate. A functional paste based on cellulose was prepared in order to allow the precise screen-printing of the TiO2 nanoparticles as sensing material on the top of the electrodes. The current against voltage (I-V) characteristic of the sensor showed good linearity and potential for low-power operation. The results of a humidity-sensing investigation and mechanical testing showed that the fabricated miniaturized sensors have excellent mechanical stability, sensing characteristics, good repeatability, and relatively fast response/recovery times operating at room temperature.

5.
Sensors (Basel) ; 17(3)2017 Mar 04.
Article in English | MEDLINE | ID: mdl-28273847

ABSTRACT

In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity.

6.
Adv Mater ; 26(33): 5876-9, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25043140

ABSTRACT

Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Micro-Electrical-Mechanical Systems/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Equipment Design , Isomerism , Microtechnology/instrumentation , Microtechnology/methods , Polymers/chemistry , Propranolol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...