Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(14): 21280-21289, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265918

ABSTRACT

Microdisks fabricated with III-nitride materials grown on GaN substrates are demonstrated, taking advantage of the high material quality of homoepitaxial films and advanced micro-fabrication processes. The epitaxial structure consists of InGaN/GaN multi-quantum wells (MQWs) sandwiched between AlGaN/GaN and InAlN/GaN superlattices as cladding layers for optical confinement. Due to lattice-matched growth with low dislocations, an internal quantum efficiency of ∼40% is attained, while the sidewalls of the etched 8 µm-diameter microdisks patterned by microsphere lithography are optically smooth to promote the formation of whispering-gallery modes (WGMs) within the circular optical cavities. Optically pumped lasing with low threshold of ∼5.2 mJ/cm2 and quality (Q) factor of ∼3000 at the dominant lasing wavelength of 436.8 nm has been observed. The microdisks also support electroluminescent operation, demonstrating WGMs consistent with the photoluminescence spectra and with finite-difference time-domain (FDTD) simulations.

2.
Nanotechnology ; 31(46): 465706, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-32498042

ABSTRACT

A multi-microscopy investigation of a GaN tunnel junction (TJ) grown on an InGaN-based light emitting diode (LED) has been performed. The TJ consists of a heavily Ge-doped n-type GaN layer grown by ammonia-based molecular-beam epitaxy on a heavily Mg-doped p-type GaN thin layer, grown by metalorganic vapor phase epitaxy. A correlation of atom probe tomography, electron holography and secondary ion mass spectrometry has been performed in order to investigate the nm-scale distribution of both Mg and Ge at the TJ. Experimental results reveal that Mg segregates at the TJ interface, and diffuses into the Ge-doped layer. As a result, the dopant concentration and distribution differ significantly from the nominal values. Despite this, electron holography reveals a TJ depletion width of ∼7 nm, in agreement with band diagram simulations using the experimentally determined dopant distribution.

3.
Opt Express ; 27(8): 11800-11808, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053020

ABSTRACT

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm2 output power density at 20 mA from such microrings with diameters of 30 to 50 µm. The first steps towards achieving an integrated photonic circuit are demonstrated.

4.
Sci Rep ; 6: 34191, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27687007

ABSTRACT

We demonstrate phase-matched second harmonic generation in gallium nitride on silicon microdisks. The microdisks are integrated with side-coupling bus waveguides in a two-dimensional photonic circuit. The second harmonic generation is excited with a continuous wave laser in the telecom band. By fabricating a series of microdisks with diameters varying by steps of 8 nm, we obtain a tuning of the whispering gallery mode resonances for the fundamental and harmonic waves. Phase matching is obtained when both resonances are matched with modes satisfying the conservation of orbital momentum, which leads to a pronounced enhancement of frequency conversion.

5.
Opt Express ; 24(9): 9602-10, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137573

ABSTRACT

We have developed a nanophotonic platform with microdisks using epitaxial III-nitride materials on silicon. The two-dimensional platform consists of suspended waveguides and mushroom-type microdisks as resonators side-coupled with a bus waveguide. Loaded quality factors up to 80000 have been obtained in the near-infrared spectral range for microdisk diameters between 8 and 15 µm. We analyze the dependence of the quality factors as a function of coupling efficiency. We have performed continuous-wave second harmonic generation experiments in resonance with the whispering gallery modes supported by the microdisks.

SELECTION OF CITATIONS
SEARCH DETAIL
...