Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 255: 127562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865356

ABSTRACT

Wharton's Jelly (WJ) has attracted significant interest in the field of tissue healing thanks to its biological properties, including antibacterial activity and immunomodulation. However, due to the fast degradation and poor mechanical behavior in biological environment, its application in bone regeneration is compromised. Here, we proposed to use genipin as an efficient cross-linking agent to significantly improve the elasticity and the enzymatical stability of the WJ matrix. The degree of cross-linking, linear elastic moduli, and collagenase resistance varied over a wide range depending on genipin concentration. Furthermore, our results highlighted that an increase in genipin concentration led to a decreased surface wettability, therefore impairing cell attachment and proliferation. The genipin cross-linking prevented rapid in vitro and in vivo degradation, but led to an adverse host reaction and calcification. When implanted in the parietal bone defect, a limited parietal bone regeneration to the dura was observed. We conclude that genipin-cross-linked WJ is a versatile medical device however, a careful selection is required with regards to the genipin concentration.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Wharton Jelly/metabolism , Wound Healing , Cell Differentiation , Umbilical Cord , Cell Proliferation
2.
Pathogens ; 12(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36986306

ABSTRACT

Infections, which interfere with bone regeneration, may be a critical issue to consider during the development of biomimetic material. Calcium phosphate (CaP) and type I collagen substrates, both suitable for bone-regeneration dedicated scaffolds, may favor bacterial adhesion. Staphylococcus aureus possesses adhesins that allow binding to CaP or collagen. After their adhesion, bacteria may develop structures highly tolerant to immune system attacks or antibiotic treatments: the biofilms. Thus, the choice of material used for scaffolds intended for bone sites is essential to provide devices with the ability to prevent bone and joint infections by limiting bacterial adhesion. In this study, we compared the adhesion of three different S. aureus strains (CIP 53.154, SH1000, and USA300) on collagen- and CaP-coating. Our objective was to evaluate the capacity of bacteria to adhere to these different bone-mimicking coated supports to better control the risk of infection. The three strains were able to adhere to CaP and collagen. The visible matrix components were more important on CaP- than on collagen-coating. However, this difference was not reflected in biofilm gene expression for which no change was observed between the two tested surfaces. Another objective was to evaluate these bone-mimicking coatings for the development of an in vitro model. Thus, CaP, collagen-coatings, and the titanium-mimicking prosthesis were simultaneously tested in the same bacterial culture. No significant differences were found compared to adhesion on surfaces independently tested. In conclusion, these coatings used as bone substitutes can easily be colonized by bacteria, especially CaP-coating, and must be used with an addition of antimicrobial molecules or strategies to avoid bacterial biofilm development.

3.
Front Bioeng Biotechnol ; 10: 958669, 2022.
Article in English | MEDLINE | ID: mdl-36312547

ABSTRACT

Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.

4.
Front Bioeng Biotechnol ; 10: 977590, 2022.
Article in English | MEDLINE | ID: mdl-36304904

ABSTRACT

Perinatal derivatives are drawing growing interest among the scientific community as an unrestricted source of multipotent stromal cells, stem cells, cellular soluble mediators, and biological matrices. They are useful for the treatment of diseases that currently have limited or no effective therapeutic options by means of developing regenerative approaches. In this paper, to generate a complete view of the state of the art, a comprehensive 10-years compilation of clinical-trial data with the common denominator of PnD usage has been discussed, including commercialized products. A set of criteria was delineated to challenge the 10-years compilation of clinical trials data. We focused our attention on several aspects including, but not limited to, treated disorders, minimal or substantial manipulation, route of administration, dosage, and frequency of application. Interestingly, a clear correlation of PnD products was observed within conditions, way of administration or dosage, suggesting there is a consolidated clinical practice approach for the use of PnD in medicine. No regulatory aspects could be read from the database since this information is not mandatory for registration. The database will be publicly available for consultation. In summary, the main aims of this position paper are to show possibilities for clinical application of PnD and propose an approach for clinical trial preparation and registration in a uniform and standardized way. For this purpose, a questionnaire was created compiling different sections that are relevant when starting a new clinical trial using PnD. More importantly, we want to bring the attention of the medical community to the perinatal products as a consolidated and efficient alternative for their use as a new standard of care in the clinical practice.

5.
Cells ; 11(18)2022 09 14.
Article in English | MEDLINE | ID: mdl-36139439

ABSTRACT

In craniofacial bone defects, the promotion of bone volume augmentation remains a challenge. Finding strategies for bone regeneration such as combining resorbable minerals with organic polymers would contribute to solving the bone volume roadblock. Here, dicalcium phosphate dihydrate, chitosan and hyaluronic acid were used to functionalize a bone-side collagen membrane. Despite an increase in the release of inflammatory mediators by human circulating monocytes, the in vivo implantation of the functionalized membrane allowed the repair of a critical-sized defect in a calvaria rat model with de novo bone exhibiting physiological matrix composition and structural organization. Microtomography, histological and Raman analysis combined with nanoindentation testing revealed an increase in bone volume in the presence of the functionalized membrane and the formation of woven bone after eight weeks of implantation; these data showed the potential of dicalcium phosphate dihydrate, chitosan and hyaluronic acid to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in animal models.


Subject(s)
Chitosan , Animals , Biocompatible Materials , Calcium Phosphates , Chitosan/pharmacology , Collagen , Humans , Hyaluronic Acid/pharmacology , Inflammation Mediators , Minerals , Rats
6.
Materials (Basel) ; 15(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36013752

ABSTRACT

Scaffolds can be defined as 3D architectures with specific features (surface properties, porosity, rigidity, biodegradability, etc.) that help cells to attach, proliferate, and to differentiate into specific lineage. For bone regeneration, rather high mechanical properties are required. That is why polylactic acid (PLA) and PLA/hydroxyapatite (HA) scaffolds (10 wt.%) were produced by a peculiar fused filament fabrication (FFF)-derived process. The effect of the addition of HA particles in the scaffolds was investigated in terms of morphology, biological properties, and biodegradation behavior. It was found that the scaffolds were biocompatible and that cells managed to attach and proliferate. Biodegradability was assessed over a 5-month period (according to the ISO 13781-Biodegradability norm) through gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and compression tests. The results revealed that the presence of HA in the scaffolds induced a faster and more complete polymer biodegradation, with a gradual decrease in the molar mass (Mn) and compressive mechanical properties over time. In contrast, the Mn of PLA only decreased during the processing steps to obtain scaffolds (extrusion + 3D-printing) but PLA scaffolds did not degrade during conditioning, which was highlighted by a high retention of the mechanical properties of the scaffolds after conditioning.

7.
Biomedicines ; 10(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35203437

ABSTRACT

Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton's jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we herein investigated whether decellularized (DC)-WJ could be used as an engineered biomaterial. In comparison with devitalized (DV)-WJ, our results showed an inherent effect of DC-WJ on Gram positive (S. aureus and S. epidermidis) and Gram negative (E. coli and P. aeruginosa) growth and adhesion. Although DC-WJ activated the neutrophils and monocytes in a comparable magnitude to DV-WJ, macrophages modulated their phenotypes and polarization states from the resting M0 phenotype to the hybrid M1/M2 phenotype in the presence of DC-WJ. M1 phenotype was predominant in the presence of DV-WJ. Finally, the subcutaneous implantation of DC-WJ showed total resorption after three weeks of implantation without any sign of foreign body reaction. These significant data shed light on the potential regenerative application of DC-WJ in providing a suitable biomaterial for tissue regenerative medicine and an ideal strategy to prevent wound-associated infections.

8.
J Mech Behav Biomed Mater ; 126: 104981, 2022 02.
Article in English | MEDLINE | ID: mdl-34915358

ABSTRACT

Wharton's jelly (WJ) is a mucous connective tissue of the umbilical cord. It shows high healing capabilities, mainly attributed to the chemical composition and to the presence of stem cells, growth factors and peptides. Although WJ biological properties are well documented in vitro and in vivo, there is still a lack of mechanical data on this tissue, which is paramount for its use as a biomaterial for medical applications. In this study, mechanical responses of ten WJ samples within close physiological conditions were registered undergoing quasi static cyclic tensile tests followed by a load up to failure. This protocol aimed on one hand to provide biomechanical data to feed predictive numerical models and on the other hand increase WJ knowledge in view of its potential use in biomedical field. In spite of the WJ harvest, the resulting viscous nonlinear elastic response obtained is fully in tune with the literature confirming the database quality. A side of the knowledge improvement on WJ mechanical response, this paper provides accurate data that will enhance predictive simulation work such as finite element analysis. The mechanical step-through brought by the analytical nonlinear characterization over cyclic and ultimate loads is to predict WJ behavior. Actually, principal component analysis highlighted its quality while pointing out indicators, such as failure or hydration criteria, as well as models' limitations.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Umbilical Cord
9.
Polymers (Basel) ; 13(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34372179

ABSTRACT

The influence of ultra-short laser modification on the surface morphology and possible chemical alteration of poly-lactic acid (PLA) matrix in respect to the optimization of cellular and antibacterial behavior were investigated in this study. Scanning electron microscopy (SEM) morphological examination of the processed PLA surface showed the formation of diverse hierarchical surface microstructures, generated by irradiation with a range of laser fluences (F) and scanning velocities (V) values. By controlling the laser parameters, diverse surface roughness can be achieved, thus influencing cellular dynamics. This surface feedback can be applied to finely tune and control diverse biomaterial surface properties like wettability, reflectivity, and biomimetics. The triggering of thermal effects, leading to the ejection of material with subsequent solidification and formation of raised rims and 3D-like hollow structures along the processed zones, demonstrated a direct correlation to the wettability of the PLA. A transition from superhydrophobic (θ > 150°) to super hydrophilic (θ < 20°) surfaces can be achieved by the creation of grooves with V = 0.6 mm/s, F = 1.7 J/cm2. The achieved hierarchical architecture affected morphology and thickness of the processed samples which were linked to the nature of ultra-short laser-material interaction effects, namely the precipitation of temperature distribution during material processing can be strongly minimized with ultrashort pulses leading to non-thermal and spatially localized effects that can facilitate volume ablation without collateral thermal damage The obtained modification zones were analyzed employing Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Energy dispersive X-ray analysis (EDX), and optical profilometer. The modification of the PLA surface resulted in an increased roughness value for treatment with lower velocities (V = 0.6 mm/s). Thus, the substrate gains a 3D-like architecture and forms a natural matrix by microprocessing with V = 0.6 mm/s, F = 1.7 J/cm2, and V = 3.8 mm/s, F = 0.8 J/cm2. The tests performed with Mesenchymal stem cells (MSCs) demonstrated that the ultra-short laser surface modification altered the cell orientation and promoted cell growth. The topographical design was tested also for the effectiveness of bacterial attachment concerning chosen parameters for the creation of an array with defined geometrical patterns.

10.
ACS Appl Bio Mater ; 4(4): 3067-3078, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014395

ABSTRACT

The present study aims to improve the interfacial bonding between hydroxyapatite particles (HAs) and polylactide (PLA) to enhance the mechanical performance and biocompatibility of bone implants based on HA/PLA. For this, one-shot surface functionalization of HA via plasma polymerization is developed. Taking advantage of acetylene plasma chemistry, the hydrophobicity of HA particles was finely tuned prior to their introduction into a PLA matrix via an extrusion process. The effect of the plasma power (20 or 100 W) on the composition of the plasma polymer film (PPF) formed on the HA surface was studied via Fourier transform infrared (FTIR) spectroscopy, time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The amount of PPF formed was evaluated via thermogravimetric analyses (TGA). Cytotoxicity of the modified HA particles was monitored by the WST-1 proliferation assay and lactate dehydrogenase (LDH) release and showed that independent on the studied conditions, cell viability remained above the 70% threshold and LDH accumulation changes were insignificant, suggesting good biocompatibility. Contact angle measurements and morphological and rheological analyses showed that the low working power promoted more hydrophobic surfaces and a better HA/PLA interface. Dynamic mechanical analyses revealed that the storage modulus at 37 °C increased for the composite containing functionalized particles by 1.5 times compared to the neat particle's composites. This work opens a route toward further one-shot development of improved scaffolds for bone tissue engineering.


Subject(s)
Bone Regeneration/drug effects , Coated Materials, Biocompatible/pharmacology , Osteoblasts/drug effects , Polymers/pharmacology , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Humans , Materials Testing , Molecular Structure , Particle Size , Polyesters/chemistry , Polyesters/pharmacology , Polymers/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry
11.
Front Cell Dev Biol ; 8: 785, 2020.
Article in English | MEDLINE | ID: mdl-32984312

ABSTRACT

Cariogenic Streptococcus mutans (S. mutans) is implicated in the dental pulp necrosis but also in cardiovascular tissue infections. Herein, the purpose was to elucidate how human dental pulp derived stromal cells (DPSCs) react toward a direct interaction with S. mutans. DPSCs were challenged with S. mutans. Following 3 h of interaction, DPSCs were able to internalize S. mutans (rate < 1%), and F-actin fibers played a significant role in this process. S. mutans persisted in the DPSCs for 48 h without causing a cytotoxic effect. S. mutans was, however, able to get out of the DPSCs cytoplasm and to proliferate in the extracellular environment. Yet, we noticed several adaptive responses of bacteria to the extracellular environment such as a modification of the kinetic growth, the increase in biofilm formation on type I collagen and polyester fabrics, as well as a tolerance toward amoxicillin. In response to infection, DPSCs adopted a proinflammatory profile by increasing the secretion of IL-8, lL-1ß, and TNF-α, strengthening the establishment of the dental pulp inflammation. Overall, these findings showed a direct impact of S. mutans on DPSCs, providing new insights into the potential role of S. mutans in infective diseases.

12.
Biomater Sci ; 8(20): 5763-5773, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32945302

ABSTRACT

A multifunctional material system that kills bacteria and drives bone healing is urgently sought to improve bone prosthesis. Herein, the osteoinductive coating made of calcium phosphate/chitosan/hyaluronic acid, named Hybrid, was proposed as an antibacterial substrate for stromal cell adhesion. This Hybrid coating possesses a contact-killing effect reducing by 90% the viability of Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) strains after 48 h of contact. In addition to the production of immunomodulatory mediators, Wharton's jelly (WJ-SCs), dental pulp (DPSCs) and bone marrow (BM-MSCs) derived stromal cells were able to release antibacterial and antibiofilm agents effective against S. aureus and P. aeruginosa strains, respectively. Studying the effect of the Hybrid coating on the internalization of S. aureus by the stromal cells, in acute-mimicking bone infection, highlighted an increase in the bacteria internalization by DPSCs and BM-MSCs when cultured on the Hybrid coating versus uncoated glass. Despite the internalization, Hybrid coating showed a beneficial effect by reducing the pathogenicity of the internalized bacteria. The formation of biofilm was reduced by at least 50% in comparison to internalized bacteria by stromal cells on uncoated glass. This work opens the route for the development of innovative antibacterial coatings by taking into account the internalization of bacteria by stromal cells.


Subject(s)
Mesenchymal Stem Cells , Anti-Bacterial Agents/pharmacology , Biopolymers , Calcium Phosphates , Staphylococcus aureus , Virulence
13.
Nanomedicine ; 29: 102256, 2020 10.
Article in English | MEDLINE | ID: mdl-32615337

ABSTRACT

In bone tissue engineering, stem cells are known to form inhomogeneous bone-like nodules on a micrometric scale. Herein, micro- and nano-infrared (IR) micro-spectroscopies were used to decipher the chemical composition of the bone-like nodule. Histological and immunohistochemical analyses revealed a cohesive tissue with bone-markers positive cells surrounded by dense mineralized type-I collagen. Micro-IR gathered complementary information indicating a non-mature collagen at the top and periphery and a mature collagen within the nodule. Atomic force microscopy combined to IR (AFM-IR) analyses showed distinct spectra of "cell" and "collagen" rich areas. In contrast to the "cell" area, spectra of "collagen" area revealed the presence of carbohydrate moieties of collagen and/or the presence of glycoproteins. However, it was not possible to determine the collagen maturity, due to strong bands overlapping and/or possible protein orientation effects. Such findings could help developing protocols to allow a reliable characterization of in vitro generated complex bone tissues.


Subject(s)
Bone Development/drug effects , Collagen/genetics , Durapatite/therapeutic use , Tissue Engineering , Collagen/chemistry , Humans , Microscopy, Atomic Force , Stem Cell Transplantation , Stem Cells/drug effects
14.
Article in English | MEDLINE | ID: mdl-31649927

ABSTRACT

While stem cell/biomaterial studies provide solid evidences that biomaterial intrinsic cues deeply affect cell fate, current strategies tend to neglect their effects on mesenchymal stem cells (MSCs) secretory activities and resulting cell-crosstalks. The present study aims to investigate the impact of bone-mimetic material (B-MM), with intrinsic osteoinductive property, on MSCs mediator secretions; and to explore underlying effects on cells involved in bone regeneration. Human MSCs were cultured, on B-MM, made from inorganic calcium phosphate supplemented with chitosan and hyaluronic acid biopolymers. Collected MSCs culture media were assessed for mediators release quantification and used further to stimulate endothelial cells (ECs) and alveolar bone derived osteoblasts (OBs). Without osteogenic supplements, MSCs committed into bone lineage forming thus 3D bone-like nodules after 21 days. Despite a weak percentage of cell commitment, our data elucidate new aspects of osteoinductive material effect on MSCs functions through the regulation of the secretion of mediators involved in bone regeneration and subsequently the MSCs/ECs indirect crosstalk with osteogenesis-boosting effect. Using MSCs culture media, we demonstrate a large potential of osteoinductive materials and MSCs in bone regenerative medicine. Such strategies could help to address some insights in cell-free therapies using MSCs derived media.

15.
Colloids Surf B Biointerfaces ; 181: 671-679, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31226642

ABSTRACT

The regeneration of bone-soft tissue interface, using functional membranes, remains challenging and can be promoted by improving mesenchymal stem cells (MSCs) paracrine function. Herein, a collagen membrane, used as guided bone regeneration membrane, was functionalized by calcium phosphate, chitosan and hyaluronic acid hybrid coating by simultaneous spray of interacting species process. Composed of brushite, octacalcium phosphate and hydroxyapatite, the hybrid coating increased the membrane stiffness by 50%. After 7 days of MSCs culture on the hybrid coated polymeric membrane, biological studies were marked by a lack of osteoblastic commitment. However, MSCs showed an enhanced proliferation along with the secretion of cytokines and growth factors that could block bone resorption and favour endothelial cell recruitment without exacerbating polynuclear neutrophils infiltration. These data shed light on the great potential of inorganic/organic coated collagen membranes as an alternative bioactive factor-like platform to improve MSCs regenerative capacity, in particular to support bone tissue vascularization and to modulate inflammatory infiltrates.


Subject(s)
Biopolymers/pharmacology , Bone Regeneration/drug effects , Calcium Phosphates/pharmacology , Collagen/pharmacology , Mesenchymal Stem Cells/drug effects , Biopolymers/chemistry , Biopolymers/metabolism , Calcium Phosphates/chemistry , Calcium Phosphates/metabolism , Cells, Cultured , Collagen/chemistry , Collagen/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Particle Size , Surface Properties
16.
Front Microbiol ; 9: 2865, 2018.
Article in English | MEDLINE | ID: mdl-30538688

ABSTRACT

Prosthesis and joint infections are an important threat in public health, especially due to the development of bacterial biofilms and their high resistance to antimicrobials. Biofilm-associated infections increase mortality and morbidity rates as well as hospitalization costs. Prevention is the best strategy for this serious issue, so there is an urgent need to understand the signals that could induce irreversible bacterial adhesion on a prosthesis. In this context, we investigated the influence of the bone environment on surface adhesion by a methicillin-susceptible Staphylococcus aureus strain. Using static and dynamic biofilm models, we tested various bone environment factors and showed that the presence of Mg2+, lack of oxygen, and starvation each increased bacterial adhesion. It was observed that human osteoblast-like cell culture supernatants, which contain secreted components that would be found in the bone environment, increased bacterial adhesion capacity by 2-fold (p = 0.015) compared to the medium control. Moreover, supernatants from osteoblast-like cells stimulated with TNF-α to mimic inflammatory conditions increased bacterial adhesion by almost 5-fold (p = 0.003) without impacting on the overall biomass. Interestingly, the effect of osteoblast-like cell supernatants on bacterial adhesion could be counteracted by the activity of synthetic antibiofilm peptides. Overall, the results of this study demonstrate that factors within the bone environment and products of osteoblast-like cells directly influence S. aureus adhesion and could contribute to biofilm initiation on bone and/or prosthetics implants.

17.
Int J Mol Sci ; 19(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30400326

ABSTRACT

The use of inorganic calcium/phosphate supplemented with biopolymers has drawn lots of attention in bone regenerative medicine. While inflammation is required for bone healing, its exacerbation alters tissue regeneration/implants integration. Inspired by bone composition, a friendly automated spray-assisted system was used to build bioactive and osteoinductive calcium phosphate/chitosan/hyaluronic acid substrate (CaP-CHI-HA). Exposing monocytes to CaP-CHI-HA resulted in a secretion of pro-healing VEGF and TGF-ß growth factors, TNF-α, MCP-1, IL-6 and IL-8 pro-inflammatory mediators but also IL-10 anti-inflammatory cytokine along with an inflammatory index below 1.5 (versus 2.5 and 7.5 following CaP and LPS stimulation, respectively). Although CD44 hyaluronic acid receptor seems not to be involved in the inflammatory regulation, results suggest a potential role of chemical composition and calcium release from build-up substrates, in affecting the intracellular expression of a calcium-sensing receptor. Herein, our findings indicate a great potential of CaP-CHI-HA in providing required inflammation-healing balance, favorable for bone healing/regeneration.


Subject(s)
Bone Substitutes/pharmacology , Calcium Phosphates/pharmacology , Chitosan/pharmacology , Gene Expression Regulation/drug effects , Hyaluronic Acid/pharmacology , Bone Regeneration/genetics , Bone Regeneration/immunology , Bone Substitutes/chemistry , Bone and Bones/cytology , Bone and Bones/metabolism , Calcium Phosphates/chemistry , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chitosan/chemistry , Gene Expression Regulation/immunology , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Hyaluronic Acid/chemistry , Inflammation , Interleukins/genetics , Interleukins/immunology , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/immunology , Signal Transduction , THP-1 Cells , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology , Vinculin/genetics , Vinculin/immunology
18.
Int J Mol Sci ; 18(10)2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29065466

ABSTRACT

Maintenance of mesenchymal stem cells (MSCs) requires a tissue-specific microenvironment (i.e., niche), which is poorly represented by the typical plastic substrate used for two-dimensional growth of MSCs in a tissue culture flask. The objective of this study was to address the potential use of collagen-based medical devices (HEMOCOLLAGENE®, Saint-Maur-des-Fossés, France) as mimetic niche for MSCs with the ability to preserve human MSC stemness in vitro. With a chemical composition similar to type I collagen, HEMOCOLLAGENE® foam presented a porous and interconnected structure (>90%) and a relative low elastic modulus of around 60 kPa. Biological studies revealed an apparently inert microenvironment of HEMOCOLLAGENE® foam, where 80% of cultured human MSCs remained viable, adopted a flattened morphology, and maintained their undifferentiated state with basal secretory activity. Thus, three-dimensional HEMOCOLLAGENE® foams present an in vitro model that mimics the MSC niche with the capacity to support viable and quiescent MSCs within a low stiffness collagen I scaffold simulating Wharton's jelly. These results suggest that haemostatic foam may be a useful and versatile carrier for MSC transplantation for regenerative medicine applications.


Subject(s)
Cellular Microenvironment , Collagen , Mesenchymal Stem Cells , Preservation, Biological/methods , Regenerative Medicine/instrumentation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...