Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38722625

ABSTRACT

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Subject(s)
Cell Survival , Hydrogels , Neurons , Tin Compounds , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Engineering/methods , PC12 Cells , Rats , Tin Compounds/chemistry , Tin Compounds/pharmacology , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Neurons/physiology , Neurons/cytology , Gold/chemistry , Gold/pharmacology , Graphite/chemistry , Graphite/pharmacology , Platinum/chemistry , Electric Stimulation , Nanotubes/chemistry , Cell Proliferation
3.
Adv Healthc Mater ; 8(9): e1801321, 2019 05.
Article in English | MEDLINE | ID: mdl-30838818

ABSTRACT

For decades, electrode-tissue interfaces are pursued to establish electrical stimulation as a reliable means to control neuronal cells behavior. However, spreading of electrical currents in tissues limits its spatial precision. Thus, optical cues, such as near-infrared (NIR) light, are explored as alternatives. Presently, NIR stimulation requires higher energy input than electrical methods despite introduction of light absorbers, e.g., gold nanoparticles. As potential solution, NIR and electrical costimulation are proposed but with limited interfaces capable of sustaining this stimulation technique. Here, a novel electroactive nanocomposite with photoactive properties in the NIR range is constructed by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysulfosuccinimide sodium (EDC)/NHS conjugation of liquid crystal graphene oxide (LCGO) to protein-coated gold nanorods (AuNR). The liquid crystal graphene oxide-gold nanorod nanocomposite (LCGO-AuNR) is fabricated into a hydrophilic electrode-coating via drop-casting, making it appropriate for versatile electrode-tissue interface fabrication. UV-vis spectrophotometry results demonstrate that LCGO-AuNR presents an absorbance peak at 798 nm (NIR range). Cyclic voltammetry measurements further confirm its electroactive capacitive properties. Furthermore, LCGO-AuNR coating supports cell adhesion, proliferation, and differentiation of NG108-15 neuronal cells. This biocompatible interface is anticipated, with ideal electrical and optical properties for NIR and electrical costimulation, to enable further development of the technique for energy-efficient and precise neuronal cell modulation.


Subject(s)
Biocompatible Materials/chemistry , Gold/chemistry , Graphite/chemistry , Liquid Crystals/chemistry , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Animals , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Mice , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Rats , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL