Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 43(4): 1023-1035, 2020 04.
Article in English | MEDLINE | ID: mdl-31884709

ABSTRACT

The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e., resistance and resilience) of pea plants subjected to drought could be enhanced by soil microbial diversity. We used a dilution approach to manipulate the microbial diversity, with a genotype approach to distinguish the effect of symbionts from that of microbial diversity as a whole. We investigated the physiology of plants in response to drought when grown on a soil containing high or low level of microbial diversity. Plants grown under high microbial diversity displayed higher productivity and greater resilience after drought. Yield losses were mitigated by 15% on average in the presence of high soil microbial diversity at sowing. Our study provides proof of concept that the soil microbial community as a whole plays a key role for yield stability after drought even in plant species living in relationships with microbial symbionts. These results emphasize the need to restore soil biodiversity for sustainable crop management and climate change adaptation.


Subject(s)
Fabaceae/physiology , Soil Microbiology , Biodiversity , Dehydration , Fabaceae/growth & development , Pisum sativum/growth & development , Pisum sativum/physiology
2.
Plant Physiol ; 180(1): 559-570, 2019 05.
Article in English | MEDLINE | ID: mdl-30782966

ABSTRACT

Plant systemic signaling pathways allow the integration and coordination of shoot and root organ metabolism and development at the whole-plant level depending on nutrient availability. In legumes, two systemic pathways have been reported in the Medicago truncatula model to regulate root nitrogen-fixing symbiotic nodulation. Both pathways involve leucine-rich repeat receptor-like kinases acting in shoots and proposed to perceive signaling peptides produced in roots depending on soil nutrient availability. In this study, we characterized in the M. truncatula Jemalong A17 genotype a mutant allelic series affecting the Compact Root Architecture2 (CRA2) receptor. These analyses revealed that this pathway acts systemically from shoots to positively regulate nodulation and is required for the activity of carboxyl-terminally encoded peptides (CEPs). In addition, we generated a double mutant to test genetic interactions of the CRA2 systemic pathway with the CLAVATA3/EMBRYO SURROUNDING REGION peptide (CLE)/Super Numeric Nodule (SUNN) receptor systemic pathway negatively regulating nodule number from shoots, which revealed an intermediate nodule number phenotype close to the wild type. Finally, we showed that the nitrate inhibition of nodule numbers was observed in cra2 mutants but not in sunn and cra2 sunn mutants. Overall, these results suggest that CEP/CRA2 and CLE/SUNN systemic pathways act independently from shoots to regulate nodule numbers.


Subject(s)
Medicago truncatula/physiology , Plant Proteins/metabolism , Plant Root Nodulation/physiology , Metabolic Networks and Pathways , Mutation , Plant Proteins/genetics , Plant Roots/physiology , Symbiosis
4.
Front Plant Sci ; 8: 2195, 2017.
Article in English | MEDLINE | ID: mdl-29354146

ABSTRACT

Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

5.
Front Plant Sci ; 8: 2249, 2017.
Article in English | MEDLINE | ID: mdl-29367857

ABSTRACT

Pea forms symbiotic nodules with Rhizobium leguminosarum sv. viciae (Rlv). In the field, pea roots can be exposed to multiple compatible Rlv strains. Little is known about the mechanisms underlying the competitiveness for nodulation of Rlv strains and the ability of pea to choose between diverse compatible Rlv strains. The variability of pea-Rlv partner choice was investigated by co-inoculation with a mixture of five diverse Rlv strains of a 104-pea collection representative of the variability encountered in the genus Pisum. The nitrogen fixation efficiency conferred by each strain was determined in additional mono-inoculation experiments on a subset of 18 pea lines displaying contrasted Rlv choice. Differences in Rlv choice were observed within the pea collection according to their genetic or geographical diversities. The competitiveness for nodulation of a given pea-Rlv association evaluated in the multi-inoculated experiment was poorly correlated with its nitrogen fixation efficiency determined in mono-inoculation. Both plant and bacterial genetic determinants contribute to pea-Rlv partner choice. No evidence was found for co-selection of competitiveness for nodulation and nitrogen fixation efficiency. Plant and inoculant for an improved symbiotic association in the field must be selected not only on nitrogen fixation efficiency but also for competitiveness for nodulation.

6.
Plant Biotechnol J ; 14(1): 177-85, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25865502

ABSTRACT

Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely related crop species, lentil and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2-cM interval of Vf chromosome 2 which was highly colinear with Mt3. The obvious candidate gene from 78 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene controlling anthocyanin production in Medicago and resequencing of the Vf orthologue showed a putative causative deletion of the entire 5' end of the gene.


Subject(s)
Chromosome Mapping/methods , Consensus Sequence/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Synteny/genetics , Vicia faba/genetics , Genetic Association Studies , Genetic Linkage , Genome, Plant , Inbreeding , Lens Plant/genetics , Medicago/genetics , Quantitative Trait Loci/genetics , Reproducibility of Results , Sequence Analysis, RNA , Tannins/metabolism , Transcriptome/genetics
7.
BMC Genomics ; 16: 105, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25765216

ABSTRACT

BACKGROUND: Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. RESULTS: A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. CONCLUSION: The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.


Subject(s)
Genetic Variation , Genome, Plant , Pisum sativum/genetics , Bayes Theorem , Discriminant Analysis , Genetic Markers , Genotype , Least-Squares Analysis , Linear Models , Microsatellite Repeats/genetics , Phenotype , Polymorphism, Single Nucleotide , Principal Component Analysis
8.
PLoS Genet ; 10(12): e1004891, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25521478

ABSTRACT

In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.


Subject(s)
Medicago truncatula/genetics , Plant Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Root Nodules, Plant/genetics , Medicago truncatula/growth & development , Medicago truncatula/microbiology , Meristem/genetics , Meristem/growth & development , Meristem/microbiology , Phylogeny , Rhizobium/physiology , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology , Symbiosis
9.
J Exp Bot ; 65(9): 2365-80, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24706718

ABSTRACT

To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185. The effects of varying nitrate supply on both root architecture and N uptake were characterized in the mutant and in the wild type. Surprisingly, the root architecture of the mutant was not modified by variation in nitrate supply. Moreover, despite its highly branched root architecture, TR185 had a permanently N-starved phenotype. A transcriptome analysis was performed to identify genes differentially expressed between the two genotypes. This analysis revealed differential responses related to the nitrate acquisition pathway and confirmed that N starvation occurred in TR185. Changes in amino acid content and expression of genes involved in the phenylpropanoid pathway were associated with differences in root architecture between the mutant and the wild type.


Subject(s)
Medicago truncatula/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Amino Acids/metabolism , Medicago truncatula/anatomy & histology , Medicago truncatula/genetics , Medicago truncatula/growth & development , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/metabolism
10.
Mol Plant Microbe Interact ; 24(11): 1333-44, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21787150

ABSTRACT

A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.


Subject(s)
Medicago/microbiology , Nitrogen Fixation , Pisum sativum/microbiology , Symbiosis , Base Sequence , Cell Nucleus/metabolism , Cloning, Molecular , DNA Primers , Genes, Plant , Medicago/genetics , Medicago/physiology , Microscopy, Confocal , Mycorrhizae/physiology , Pisum sativum/genetics , Pisum sativum/physiology , Plants, Genetically Modified , Polymerase Chain Reaction
11.
Plant J ; 65(6): 861-71, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21276104

ABSTRACT

The number of root nodules developing on legume roots after rhizobial infection is controlled by the plant shoot through autoregulation and mutational inactivation of this mechanism leads to hypernodulation. We have characterised the Pisum sativum (pea) Sym28 locus involved in autoregulation and shown that it encodes a protein similar to the Arabidopsis CLAVATA2 (CLV2) protein. Inactivation of the PsClv2 gene in four independent sym28 mutant alleles, carrying premature stop codons, results in hypernodulation of the root and changes to the shoot architecture. In the reproductive phase sym28 shoots develops additional flowers, the stem fasciates, and the normal phyllotaxis is perturbed. Mutational substitution of an amino acid in one leucine rich repeat of the corresponding Lotus japonicus LjCLV2 protein results in increased nodulation. Similarly, down-regulation of the Lotus Clv2 gene by RNAi mediated reduction of the transcript level also resulted in increased nodulation. Gene expression analysis of LjClv2 and Lotus hypernodulation aberrant root formation Har1 (previously shown to regulate nodule numbers) indicated they have overlapping organ expression patterns. However, we were unable to demonstrate a direct protein-protein interaction between LjCLV2 and LjHAR1 proteins in contrast to the situation between equivalent proteins in Arabidopsis. LjHAR1 was localised to the plasma membrane using a YFP fusion whereas LjCLV2-YFP localised to the endoplasmic reticulum when transiently expressed in Nicotiana benthamiana leaves. This finding is the most likely explanation for the lack of interaction between these two proteins.


Subject(s)
Genes, Plant , Lotus/genetics , Lotus/physiology , Pisum sativum/genetics , Pisum sativum/physiology , Plant Root Nodulation/genetics , Plant Root Nodulation/physiology , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , DNA, Plant/genetics , Homeostasis/genetics , Homeostasis/physiology , Lotus/growth & development , Models, Biological , Molecular Sequence Data , Mutagenesis, Site-Directed , Pisum sativum/growth & development , Phenotype , Plant Proteins/genetics , Plant Proteins/physiology , Plants, Genetically Modified , RNA Interference , Sequence Homology, Amino Acid , Species Specificity , Nicotiana/genetics , Nicotiana/physiology
12.
PLoS One ; 5(3): e9519, 2010 Mar 04.
Article in English | MEDLINE | ID: mdl-20209049

ABSTRACT

The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.


Subject(s)
Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Medicago/metabolism , Symbiosis/physiology , Algorithms , Cell Differentiation , Expressed Sequence Tags , Gene Expression Profiling , Genetic Markers , Mutation , Nitrogen/chemistry , Nitrogen Fixation , Phenotype , Ploidies , Sinorhizobium meliloti/genetics
13.
Theor Appl Genet ; 121(1): 71-86, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20180092

ABSTRACT

Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant-Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the 'Cameor' x 'Ballet' population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, (15)N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.


Subject(s)
Nitrogen/metabolism , Pisum sativum , Plant Roots , Plant Shoots , Quantitative Trait Loci , Root Nodules, Plant , Genes, Plant , Genetic Variation , Genotype , Nitrogen Fixation/physiology , Pisum sativum/anatomy & histology , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Root Nodules, Plant/anatomy & histology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism
14.
New Phytol ; 185(3): 817-28, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20015066

ABSTRACT

Adaptation of Medicago truncatula to local nitrogen (N) limitation was investigated to provide new insights into local and systemic N signaling. The split-root technique allowed a characterization of the local and systemic responses of NO(3)(-) or N(2)-fed plants to localized N limitation. (15)N and (13)C labeling were used to monitor plant nutrition. Plants expressing pMtENOD11-GUS and the sunn-2 hypernodulating mutant were used to unravel mechanisms involved in these responses. Unlike NO(3)(-)-fed plants, N(2)-fixing plants lacked the ability to compensate rapidly for a localized N limitation by up-regulating the N(2)-fixation activity of roots supplied elsewhere with N. However they displayed a long-term response via a growth stimulation of pre-existing nodules, and the generation of new nodules, likely through a decreased abortion rate of early nodulation events. Both these responses involve systemic signaling. The latter response is abolished in the sunn mutant, but the mutation does not prevent the first response. Local but also systemic regulatory mechanisms related to plant N status regulate de novo nodule development in Mt, and SUNN is required for this systemic regulation. By contrast, the stimulation of nodule growth triggered by systemic N signaling does not involve SUNN, indicating SUNN-independent signaling.


Subject(s)
Adaptation, Physiological/drug effects , Medicago truncatula/drug effects , Medicago truncatula/growth & development , Nitrogen/pharmacology , Root Nodules, Plant/drug effects , Root Nodules, Plant/growth & development , Biomass , Carbon/metabolism , Mutation/genetics , Nitrates/pharmacology , Nitrogen/deficiency , Nitrogen/metabolism , Nitrogen Fixation/drug effects , Plant Root Nodulation/drug effects , Time Factors
15.
C R Biol ; 332(11): 1022-33, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19909924

ABSTRACT

An integrative biology approach was conducted in Medicago truncatula for: (i) unraveling the coordinated regulation of NO3-, NH4+ and N(2) acquisition by legumes to fulfill the plant N demand; and (ii) modeling the emerging properties occurring at the whole plant level. Upon localized addition of a high level of mineral N, the three N acquisition pathways displayed similar systemic feedback repression to adjust N acquisition capacities to the plant N status. Genes associated to these responses were in contrast rather specific to the N source. Following an N deficit, NO3- fed plants maintained efficiently their N status through rapid functional and developmental up regulations while N(2) fed plants responded by long term plasticity of nodule development. Regulatory genes associated with various symbiotic stages were further identified. An ecophysiological model simulating relations between leaf area and roots N retrieval was developed and now furnishes an analysis grid to characterize a spontaneous or induced genetic variability for plant N nutrition.


Subject(s)
Medicago truncatula/drug effects , Models, Biological , Nitrates/pharmacology , Nitrogen Fixation/physiology , Nitrogen/metabolism , Quaternary Ammonium Compounds/pharmacology , Adaptation, Physiological , Feedback, Physiological , Fertilizers , Genes, Plant , Genes, Regulator , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Nitrates/metabolism , Nitrogen Fixation/genetics , Plant Leaves/metabolism , Plant Root Nodulation/genetics , Plant Root Nodulation/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/metabolism , Quaternary Ammonium Compounds/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/physiology , Symbiosis , Systems Integration
16.
Mycorrhiza ; 19(6): 435-441, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19347373

ABSTRACT

One key strategy for the identification of plant genes required for mycorrhizal development is the use of plant mutants affected in mycorrhizal colonisation. In this paper, we report a new Medicago truncatula mutant defective for nodulation but hypermycorrhizal for symbiosis development and response. This mutant, called B9, presents a poor shoot and, especially, root development with short laterals. Inoculation with Glomus intraradices results in significantly higher root colonisation of the mutant than the wild-type genotype A17 (+20% for total root length, +16% for arbuscule frequency in the colonised part of the root, +39% for arbuscule frequency in the total root system). Mycorrhizal effects on shoot and root biomass of B9 plants are about twofold greater than in the wild-type genotype. The B9 mutant of M. truncatula is characterised by considerably higher root concentrations of the phytoestrogen coumestrol and by the novel synthesis of the coumestrol conjugate malonyl glycoside, absent from roots of wild-type plants. In conclusion, this is the first time that a hypermycorrhizal plant mutant affected negatively for nodulation (Myc(++), Nod (-/+) phenotype) is reported. This mutant represents a new tool for the study of plant genes differentially regulating mycorrhiza and nodulation symbioses, in particular, those related to autoregulation mechanisms.


Subject(s)
Glomeromycota/growth & development , Medicago truncatula/physiology , Mutation , Mycorrhizae/growth & development , Plant Root Nodulation , Plant Roots/microbiology , Biomass , Coumestrol/analysis , Medicago truncatula/genetics , Medicago truncatula/growth & development , Plant Roots/chemistry , Plant Roots/growth & development , Plant Shoots/growth & development
17.
BMC Res Notes ; 1: 129, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19077311

ABSTRACT

BACKGROUND: Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. FINDINGS: Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States.

18.
Ann Bot ; 100(7): 1525-36, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17921490

ABSTRACT

BACKGROUNDS AND AIMS: Nitrogen nutrition of legumes, which relies both on atmospheric N2 and soil mineral N, remains a major limiting factor of growth. A decade ago, breeders tried to increase N uptake through hypernodulation. Despite their high nodule biomass, hypernodulating mutants were never shown to accumulate more nitrogen than wild types; they even generally displayed depressed shoot growth. The aim of this study was to dissect genetic variability associated with N nutrition in relation to C nutrition, using an ecophysiological framework and to propose an ideotype for N nutrition in pea. METHODS: Five pea genotypes (Pisum sativum) characterized by contrasting root and nodule biomasses were grown in the field. Variability among genotypes in dry matter and N accumulation was analysed, considering both the structures involved in N acquisition in terms of root and nodule biomass and their efficiency, in terms of N accumulated through mineral N absorption or symbiotic N2 fixation per amount of root or nodule biomass, respectively. KEY RESULTS: Nodule efficiency of hypernodulating mutants was negatively correlated to nodule biomass, presumably due to the high carbon costs induced by their excessive nodule formation. Root efficiency was only negatively correlated to root biomass before the beginning of the seed-filling stage, suggesting competition for carbon between root formation and functioning during the early stages of growth. This was no longer the case after the beginning of the seed-filling stage and nitrate absorption was then positively correlated to root biomass. CONCLUSIONS: Due to the high C costs induced by nodule formation and its detrimental effect on shoot and root growth, selecting traits for the improvement of N acquisition by legumes must be engineered (a) considering inter-relationships between C and N metabolisms and (b) in terms of temporal complementarities between N2 fixation and nitrate absorption rather than through direct increase of nodule and/or root biomass.


Subject(s)
Nitrogen Fixation , Nitrogen/metabolism , Pisum sativum/metabolism , Plant Roots/metabolism , Biomass , Carbon/metabolism , Ecology , Genetic Variation , Genotype , Pisum sativum/genetics , Pisum sativum/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism
19.
Mol Plant Microbe Interact ; 20(10): 1183-91, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17918620

ABSTRACT

The Pisum sativum SYM8 gene plays an essential part in both rhizobial and mycorrhizal symbioses. Mutation of sym8 in the original type line R25 blocks nodulation, mycorrhization, and Nod-factor-induced calcium spiking, an early component of the nodulation signaling pathway. We describe four new sym8 alleles of pea, which fall into the same complementation group as R25. The sym8 mutants are phenotypically similar to Medicago truncatula dmi1 mutants and map to a syntenic location. We used sequence homology to isolate the pea ortholog of M. truncatula DMI1 and have shown that the cloned pea ortholog can complement a M. truncatula dmi1 mutant for nodulation. Each of the five pea sym8 mutants carries a mutation in the DMI1 ortholog, confirming that the pea SYM8 is the DMI1 ortholog. Based on predicted structural similarities with an archaebacterial ion channel, we propose that SYM8 forms a tetrameric calcium-gated channel of a predicted structure similar to the archaebacterial potassium channel but containing a filter region that is different. The predicted structure identifies four aspartate residues (one from each subunit) forming the channel opening. We made a mutation changing the aspartate to valine and identified a missense mutation (changing alanine to valine adjacent to the aspartate residues) in this predicted filter region; both mutations caused a loss of function. We also identified a loss-of-function missense mutation (changing arginine to isoleucine) in a domain proposed to link the predicted channel and the gating ring domains, indicating that this mutation may block function by preventing a protein conformational change being transmitted from the gating-ring domain to the pore domain.


Subject(s)
Ion Channels/chemistry , Ion Channels/genetics , Pisum sativum/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Symbiosis/genetics , Amino Acid Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Ion Channels/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Molecular Sequence Data , Mutation, Missense , Pisum sativum/metabolism , Plant Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship
20.
New Phytol ; 176(3): 680-690, 2007.
Article in English | MEDLINE | ID: mdl-17822397

ABSTRACT

The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.


Subject(s)
Pisum sativum/microbiology , Plant Shoots/growth & development , Rhizobium leguminosarum/genetics , Root Nodules, Plant/growth & development , Symbiosis/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Genotype , Nitrogen/metabolism , Nitrogen Fixation/physiology , Pisum sativum/growth & development , Pisum sativum/metabolism , Plant Shoots/metabolism , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...