Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 376: 128853, 2023 May.
Article in English | MEDLINE | ID: mdl-36898569

ABSTRACT

Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.


Subject(s)
Ammonium Compounds , Microbial Consortia , Bioreactors , Anaerobiosis , Sodium Chloride/pharmacology , Methane , Geologic Sediments , Salt Stress
2.
Bioresour Technol ; 360: 127571, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788390

ABSTRACT

Ammonium (NH4+) and salinity are major inhibitors of CH4 production in anaerobic digestion. This study evaluated their inhibitory effects on CH4 production and explored the key populations for efficient CH4 production under high NH4+ and NaCl concentrations to understand their inhibition mechanisms. Comparative batch experiments for mesophilic anaerobic digestion were conducted using three seeding sludges under different concentrations of NH4+ (1-5 gNH4-N/L) and NaCl (10-30 g/L). Although all sludges tolerated 3 gNH4-N/L and 10 g/L NaCl, NH4+ or NaCl concentrations higher than these substantially reduced CH4 production, depending on the seeding sludge, primarily by impairing the initial hydrolysis and methanogenesis steps. In addition, propionate was found to be a deterministic factor affecting CH4 production. Based on microbial community analysis, Candidatus Brevefilum was identified as a potential syntrophic propionate-oxidizing bacterium that facilitates the mitigation of propionate accumulation, allowing the maintenance of unaffected CH4 production under high inhibitory conditions.


Subject(s)
Ammonium Compounds , Bioreactors , Anaerobiosis , Bioreactors/microbiology , Methane/analysis , Propionates , Salinity , Sewage/microbiology , Sodium Chloride/pharmacology
3.
Bioresour Technol ; 304: 123015, 2020 May.
Article in English | MEDLINE | ID: mdl-32088629

ABSTRACT

The relationship between fouling development in a continuous laboratory-scale membrane reactor (MBR/Lab) and the membrane material was investigated using flat-sheet membranes prepared from four materials (polyvinylidene difluoride (PVDF), polyethersulfone, chlorinated polyvinyl chloride, and polytetrafluoroethylene). Further, the characteristics of the suspension liquid in MBR/Lab were compared with those of samples from actual wastewater treatment plants. It was found that, in addition to the membrane material's own characteristics, the structural vulnerability of the membranes had a determining effect on fouling development. The PVDF membrane showed the highest transmembrane pressure during MBR operation and its surface experienced significant damage because of the shearing stress caused by aeration, resulting in the penetration of the membrane by the fouling compounds. The characteristics of suspension liquid in MBR/Lab were almost similar to those in the MBR at a night-soil treatment plant and the aeration tank of a sewage treatment plant.


Subject(s)
Membranes, Artificial , Sewage , Bioreactors , Longitudinal Studies , Wastewater
4.
Sci Total Environ ; 657: 146-153, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30537577

ABSTRACT

There are growing concerns about nitrate contamination in Kumamoto City, where >700,000 people completely depend on groundwater as a source of drinking water. We found that some groundwater samples showed considerably different nitrate concentrations although their sampling locations were close to one another, and we speculated that this phenomenon was due to the differences in subsurface geological properties. In order to verify this hypothesis, we carried out temporally intensive long-term monitoring of the groundwater levels and water qualities at three of the closely related sampling wells, and the results revealed that the changes in water level and water quality were different at each well. The water level at well T1, where nitrate concentrations ranged from 12 to 26 mg N/L, showed a significantly sensitive and unique response to heavy rain, which indicated that the subsurface at this site might be highly permeable; this would have allowed for the influent water to easily reach the groundwater aquifer over a short period. However, wells T2 and T3, which were located within 0.6 and 1.9 km from well T1, respectively, had nitrate concentrations that were lower than that in well T1 (4.5-8.0 mg N/L) and showed only gradual responses to heavy rain. These observations suggest that the highly permeable subsurface properties in the vicinity of well T1 contributed to the more serious nitrate contamination in well T1 than those at wells T2 and T3. This study demonstrates the importance of temporally intensive, long-term monitoring for capturing changes in groundwater level and water quality with precipitation fluctuations, and we showed how this approach can lead to a better understanding of the nitrate contamination situation.

SELECTION OF CITATIONS
SEARCH DETAIL
...