Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 201: 107892, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37490823

ABSTRACT

Arbuscular mycorrhizal (AM) fungi could mitigate individual drought and heat stress in host plants. However, there are still major gaps in our understanding of AM symbiosis response to the combined stresses. Here, we compared seven AM fungi, Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum, Funneliformis verruculosum, Funneliformis coronatum, Septoglomus deserticola, Septoglomus constrictum, distributed to many world regions in terms of their impacts on tomato endurance to combined drought and chronic heat as well as combined drought and heat shock. A multidisciplinary approach including morphometric, ecophysiological, biochemical, targeted metabolic (by ultrahigh-performance LC-MS), and molecular analyses was applied. The variation among AM fungi isolates in the enhancement in leaf water potential, stomatal conductance, photosynthetic activity, and maximal PSII photochemical efficiency, proline accumulation, antioxidant enzymes (POD, SOD, CAT), and lowered ROS markers (H2O2, MDA) in host plants under combined stresses were observed. S. constrictum inoculation could better enhanced the host plant physiology and biochemical parameters, while F. geosporum colonization less positively influenced the host plants than other treatments under both combined stresses. F. mosseae- and S. constrictum-associated plants showed the common AM-induced modifications and AM species-specific alterations in phytohormones (ABA, SA, JA, IAA), aquaporin (SlSIP1-2; SlTIP2-3; SlNIP2-1; SlPIP2-1) and abiotic stress-responsive genes (SlAREB1, SlLEA, SlHSP70, SlHSP90) in host plants under combined stresses. Altogether, mycorrhizal mitigation of the negative impacts of drought + prolonged heat and drought + acute heat, with the variation among different AM fungi isolates, depending on the specific combined stress and stress duration.


Subject(s)
Mycorrhizae , Solanum lycopersicum , Mycorrhizae/physiology , Symbiosis/physiology , Plant Roots/metabolism , Droughts , Hydrogen Peroxide/metabolism , Heat-Shock Response
2.
Front Plant Sci ; 13: 1046685, 2022.
Article in English | MEDLINE | ID: mdl-36561453

ABSTRACT

Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.

3.
Front Plant Sci ; 11: 612299, 2020.
Article in English | MEDLINE | ID: mdl-33519869

ABSTRACT

Eclipta prostrata (L.) is an important and well-known medicinal plant due to its valuable bioactive compounds. Microorganisms, including arbuscular mycorrhizal fungi (AMF), and salinity could directly impact plant metabolome, thus influencing their secondary metabolites and the efficacy of herbal medicine. In this study, the role of different single AMF species (Funneliformis mosseae, Septoglomus deserticola, Acaulospora lacunosa) and a mixture of six AMF species in plant growth and physio-biochemical characteristics of E. prostrata under non-saline conditions was investigated. Next, the most suitable AM treatment was chosen to examine the impact of AMF on physio-biochemical features and polyphenol profiles of E. prostrata under saline conditions (100 and 200 mM NaCl). The findings indicated that AMF mixture application resulted in more effective promotion on the aboveground part of non-saline plants than single AMF species. AM mixture application improved growth and salt tolerance of E. prostrata through increasing the activity of catalase, peroxidase (at 4 weeks), proline, and total phenolic content (at 8 weeks). Such benefits were not observed under high salinity, except for a higher total phenolic concentration in mycorrhizal plants at 8 weeks. Through high-performance liquid chromatography, 14 individual phenolic compounds were analyzed, with wedelolactone and/or 4,5-dicaffeoylquinic acid abundant in all treatments. Salinity and mycorrhizal inoculation sharply altered the polyphenol profiles of E. prostrata. Moderate salinity boosted phenolic compound production in non-AM plants at 4 weeks, while at 8 weeks, the decline in the content of phenolic compounds occurred in uncolonized plants subjected to both saline conditions. Mycorrhization augmented polyphenol concentration and yield under non-saline and saline conditions, depending on the growth stages and salt stress severity. Plant age influenced polyphenol profiles with usually a higher content of phenolic compounds in older plants and changed the production of individual polyphenols of both non-AM and AM plants under non-stress and salt stress conditions. A better understanding of factors (involving mycorrhiza and salinity) affecting the phenolic compounds of E. prostrata facilitates the optimization of individual polyphenol production in this medicinal plant.

4.
Plant Physiol Biochem ; 132: 297-307, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30245343

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis can alleviate drought and temperature stresses in plants, but it is unknown whether the benefits can be maintained when the plants are exposed to combined drought and heat stress. In this study, the impacts of AM fungi, Septoglomus deserticola and Septoglomus constrictum on tomato plant tolerance to combined drought and heat stress were investigated. No substantial differences in physiological parameters were found in all plants under non-stress conditions, except a higher expression of SlLOXD and SlPIP2.7 in plants + S. constrictum. Under drought, heat and drought + heat stress, both fungal symbionts could moderate oxidative stress by decreasing the lipid peroxidation, hydrogen peroxide level and improving leaf and root antioxidant enzyme activities, however better performance in plants + S. constrictum. Under drought and the combined stress, inoculation with S. constrictum enhanced stomatal conductance, leaf water potential and relative water content, elevated Fv/Fm and biomass production of the hosts as compared to non-inoculated plants whilst these improvements in plants + S. deserticola were not obvious. Under the combined stress inoculation of S. constrictum did not change the expression of SlNCED and SlPIP2.7 in roots as under heat stress. Expression of SlLOXD in root were upregulated in plants + S. contrictum under drought + heat stress as in mycorrhizal roots under drought stress. Altogether, our results indicated that AM inoculation, particularly with S. constrictum had a positive influence on the tomato plant tolerance to drought + heat stress. Further studies are essential to add some light on molecular mechanisms of mycorrhizal plant tolerance to this combined stress.


Subject(s)
Droughts , Heat-Shock Response/physiology , Mycorrhizae/physiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Stress, Physiological , Antioxidants/metabolism , Biomass , Biosynthetic Pathways/genetics , Chlorophyll/metabolism , Fluorescence , Genes, Plant , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Solanum lycopersicum/genetics , Malondialdehyde/metabolism , Photosystem II Protein Complex/metabolism , Plant Development , Plant Leaves/enzymology , Plant Shoots/microbiology , Plant Stomata/physiology , Symbiosis
5.
Acta Biol Hung ; 69(2): 170-181, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29888669

ABSTRACT

The protective role of arbuscular mycorrhizal fungi (AMF) against the phytopathogen Clavibacter michiganensis subsp. michiganensis (Cmm) was examined in tomato plants. Seven different AMF isolates were used to determine which ones were able to induce effectively resistance against Cmm. Stems of seven-week tomato plants were infected with Cmm, then a disease severity index (DSI) was determined during the next three weeks. In addition to different responses to mycorrhizal inoculation, three levels of responses to the bacterial disease were recognized in treatments. Plants inoculated with Rhizophagus irregularis (Ri) showed both the highest colonization and the highest induced resistance to Cmm while the effect of Funneliformis mosseae, Gigaspora margarita and Claroideoglomus claroideum on mycorrhizal colonization and on the induced resistance were intermediate and high, respectively. Subsequently, Ri was chosen to inoculate ethylene-insensitive tomato mutant line Never ripe (Nr) and its background (Pearson) to investigate the possible role of ethylene (ET) in the mycorrhiza-induced resistance (MIR). The results showed that Ri could induce systemic resistance against Cmm in the Pearson background, whereas ET-insensitivity in Nr plants impaired MIR. These results suggest that ET is required for Ri-induced resistance against Cmm. To our knowledge, this is the first study to examine the effect of different AMF isolates on the response of tomato plants to Cmm and involvement of ET in MIR against Cmm.


Subject(s)
Actinomycetales Infections/physiopathology , Carrier State/metabolism , Disease Resistance/physiology , Ethylenes/metabolism , Glomeromycota/physiology , Mycorrhizae/physiology , Plant Diseases/microbiology , Solanum lycopersicum/physiology , Actinomycetales
6.
Acta Biol Hung ; 68(4): 376-387, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29262715

ABSTRACT

The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Helianthus/metabolism , Mycorrhizae/metabolism , Oxidoreductases/biosynthesis , Plant Proteins/biosynthesis , Stress, Physiological
7.
PLoS One ; 9(1): e84866, 2014.
Article in English | MEDLINE | ID: mdl-24465443

ABSTRACT

BACKGROUND: Rifampicin and protease inhibitors are difficult to use concomitantly in patients with HIV-associated tuberculosis because of drug-drug interactions. Rifabutin has been proposed as an alternative rifamycin, but there is concern that the current recommended dose is suboptimal. The principal aim of this study was to compare bioavailability of two doses of rifabutin (150 mg three times per week and 150 mg daily) in patients with HIV-associated tuberculosis who initiated lopinavir/ritonavir-based antiretroviral therapy in Vietnam. Concentrations of lopinavir/ritonavir were also measured. METHODS: This was a randomized, open-label, multi-dose, two-arm, cross-over trial, conducted in Vietnamese adults with HIV-associated tuberculosis in Ho Chi Minh City (Clinical trial registry number NCT00651066). Rifabutin pharmacokinetics were evaluated before and after the introduction of lopinavir/ritonavir -based antiretroviral therapy using patient randomization lists. Serial rifabutin and 25-O-desacetyl rifabutin concentrations were measured during a dose interval after 2 weeks of rifabutin 300 mg daily, after 3 weeks of rifabutin 150 mg daily with lopinavir/ritonavir and after 3 weeks of rifabutin 150 mg three times per week with lopinavir/ritonavir. RESULTS: Sixteen and seventeen patients were respectively randomized to the two arms, and pharmacokinetic analysis carried out in 12 and 13 respectively. Rifabutin 150 mg daily with lopinavir/ritonavir was associated with a 32% mean increase in rifabutin average steady state concentration compared with rifabutin 300 mg alone. In contrast, the rifabutin average steady state concentration decreased by 44% when rifabutin was given at 150 mg three times per week with lopinavir/ritonavir. With both dosing regimens, 2 - 5 fold increases of the 25-O-desacetyl- rifabutin metabolite were observed when rifabutin was given with lopinavir/ritonavir compared with rifabutin alone. The different doses of rifabutin had no significant effect on lopinavir/ritonavir plasma concentrations. CONCLUSIONS: Based on these findings, rifabutin 150 mg daily may be preferred when co-administered with lopinavir/ritonavir in patients with HIV-associated tuberculosis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00651066.


Subject(s)
HIV Infections/drug therapy , Lopinavir/therapeutic use , Rifabutin/therapeutic use , Ritonavir/therapeutic use , Tuberculosis/drug therapy , Adult , Antibiotics, Antitubercular/adverse effects , Antibiotics, Antitubercular/pharmacokinetics , Antibiotics, Antitubercular/therapeutic use , Area Under Curve , Asian People , Biological Availability , Chemical and Drug Induced Liver Injury/etiology , Cross-Over Studies , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , HIV Infections/complications , HIV Infections/ethnology , HIV Protease Inhibitors/adverse effects , HIV Protease Inhibitors/therapeutic use , Humans , Lopinavir/adverse effects , Male , Rifabutin/adverse effects , Rifabutin/pharmacokinetics , Ritonavir/adverse effects , Treatment Outcome , Tuberculosis/complications , Tuberculosis/ethnology , Vietnam
8.
J Infect Dis ; 192(1): 79-88, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15942897

ABSTRACT

BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to 1 or more antituberculosis drugs is an increasingly common clinical problem, although the impact on outcome is uncertain. METHODS: We performed a prospective study of 180 Vietnamese adults admitted consecutively for TBM. M. tuberculosis was cultured from the cerebrospinal fluid (CSF) of all patients and was tested for susceptibility to first-line antituberculosis drugs. Presenting clinical features, time to CSF bacterial clearance, clinical response to treatment, and 9-month morbidity and mortality were compared between adults infected with susceptible and those infected with drug-resistant organisms. RESULTS: Of 180 isolates, 72 (40.0%) were resistant to at least 1 antituberculosis drug, and 10 (5.6%) were resistant to at least isoniazid and rifampicin. Isoniazid and/or streptomycin resistance was associated with slower CSF bacterial clearance but not with any differences in clinical response or outcome. Combined isoniazid and rifampicin resistance was strongly predictive of death (relative risk of death, 11.63 [95% confidence interval, 5.21-26.32]) and was independently associated with human immunodeficiency virus infection. CONCLUSIONS: Isoniazid and/or streptomycin resistance probably has no detrimental effect on the outcome of TBM when patients are treated with first-line antituberculosis drugs, but combined isoniazid and rifampicin resistance is strongly predictive of death.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Tuberculosis, Meningeal/drug therapy , Adolescent , Adult , Aged , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Prospective Studies , Treatment Outcome , Tuberculosis, Meningeal/microbiology , Tuberculosis, Meningeal/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...