Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 297: 134074, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35219712

ABSTRACT

In the present work, a three-dimensional electrode reactor (3Der) using pallet activated carbon (PAC), as particle electrodes, was investigated to degrade non-biodegradable organic pollutants in pharmaceutical wastewater and steel industry wastewater. The effect of operating parameters, such as pH, electrode distance, O2 flow rate, and current density was investigated. The TOC removal efficiency in 3Der was achieved at the highest mineralization yield of 94.1% after 180 min electrolysis, which was 10-19% higher than the two-dimensional electrode reactor (2Der). The higher performance of the 3Der can be attributed to the indirect and direct oxidation mechanisms. The impact of supporting electrolytes was decreased in order as chloride > nitrate > sulfate. The morphology of sludge and the presence of Fe(OH)3 after Fenton-oxidation were investigated. 3Der system improved biodegradability of pharmaceutical wastewater after electro-Fenton treatment at a PW/SIW ratio of 3:1 (BOD5/COD = 0.6). Hence, the mechanism of 3Der/PAC, as particle electrodes was also proposed. 3Der with PAC particle electrodes using steel industry wastewater as a catalyst is an exciting technique for remediation of organic contaminated pharmaceutical wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Charcoal , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Pharmaceutical Preparations , Steel , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...