Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1514(2): 217-29, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11557022

ABSTRACT

The molecular basis for inactivation in Ca(V)2.3 (alpha 1E) channels was studied after expression of alpha 1E/alpha 1C (Ca(V)2.3/Ca(V)1.2) chimeras in Xenopus oocytes. In the presence of 10 mM Ba(2+), the CEEE chimera (Repeat I+part of the I-II linker from Ca(V)1.2) displayed inactivation properties similar to Ca(V)1.2 despite being more than 90% homologous to Ca(V)2.3. The transmembrane segments of Repeat I did not appear to be crucial as inactivation of EC(IS1-6)EEE was not significantly different than Ca(V)2.3. In contrast, EC(AID)EEE, with the beta-subunit binding domain from Ca(V)1.2, tended to behave like Ca(V)1.2 in terms of inactivation kinetics and voltage dependence. A detailed kinetic analysis revealed nonetheless that CEEE and EC(AID)EEE retained the fast inactivation time constant (tau(fast) approximately equal to 20-30 ms) that is a distinctive feature of Ca(V)2.3. Altogether, these data suggest that the region surrounding the AID binding site plays a pivotal albeit not exclusive role in determining the inactivation properties of Ca(V)2.3.


Subject(s)
Calcium Channels, N-Type/genetics , Amino Acid Sequence , Animals , Calcium/chemistry , Calcium Channels, N-Type/chemistry , Chimera , Kinetics , Molecular Sequence Data , Oocytes , Phenotype , Protein Conformation , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...