Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Biomech Eng ; 139(6)2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28395001

ABSTRACT

Commercially available prosthetic hands do not convey any tactile information, forcing amputees to rely solely on visual attention. A promising solution to this problem is haptics, which could lead to new prostheses in which tactile information is conveyed between the amputee and the artificial limb. However, the haptic feedback must be optimized so that amputees can use it effectively; and although several studies have examined how specific haptic feedback systems can transmit certain types of tactile information, there has not yet been much research on the effects of superposing two or more types of feedback at the same location, which might prove to be more effective than using a single type of feedback alone. This paper investigates how the simultaneous application of two different types of haptic feedback-vibration and normal stress-impacts the human sensory perception of each separate feedback type. These stimuli were applied to glabrous skin on the forearms of 14 participants. Our experiments tested whether participants experienced more accurate sensory perception, compared to vibration or normal stress alone, when vibration was applied at the same time as the normal stress, at either the same location, or at a different location 6 cm away. Results indicate that although participants' perception of the normal stress diminished when vibration was applied at the same location, the same combination improved their perception of the vibration. Apparently, vibration has a negative impact upon the ability to perceive normal stress, whether applied at the same or a different location; whereas the opposite is true for the effect of normal stress upon the perception of vibration.


Subject(s)
Artificial Limbs , Feedback , Physical Stimulation , Stress, Mechanical , Touch Perception , Vibration , Adult , Female , Hand , Humans , Male , Time Factors , User-Computer Interface , Young Adult
3.
IEEE Trans Neural Syst Rehabil Eng ; 25(8): 1230-1239, 2017 08.
Article in English | MEDLINE | ID: mdl-28113772

ABSTRACT

This paper presents a vibrotactile haptic feedback system for use under dynamic conditions, verifies its functionality, and shows how results may be affected by the amount of training that subjects receive. We hope that by using vibrotactile feedback to distinguish between different textures, upper-limb amputees may be able to partially regain the sense of touch. During a previous experiment (Motamedi et al., 2015) we noticed a correlation between how familiar the subjects were with haptic systems, and how well they were able to use the haptic system to accurately identify textures. This observation lead us to conduct a second experiment, the results of which are the main focus of this paper. We began with a group of subjects who were completely unfamiliar with haptic systems, and tracked the improvements in their accuracy over a period of four weeks. Although the subjects showed a 16% improvement in their ability to recognize textures, going from a 64% success rate after the first week to 80% after the fourth, perfect accuracy was not attained. A subsequent experiment, however, shows that this result should not diminish our perception of the haptic system's effectiveness. When we asked the same subjects to identify the textures using only their fingertips, we found that even humans cannot distinguish between near-identical textures with complete accuracy. The subjects' overall success rate when using their own hands was 91%, demonstrating that the proposed haptic system is not far from achieving the same texture recognition capabilities as the human sense of touch.


Subject(s)
Biofeedback, Psychology/methods , Feedback, Sensory , Physical Stimulation/methods , Sensation Disorders/physiopathology , Sensation Disorders/rehabilitation , Touch , Adult , Female , Fingers/innervation , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Sensory Thresholds , Task Performance and Analysis , Treatment Outcome , Vibration , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...