Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 375(6585): 1145-1151, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271325

ABSTRACT

Global biosphere productivity is the largest uptake flux of atmospheric carbon dioxide (CO2), and it plays an important role in past and future carbon cycles. However, global estimation of biosphere productivity remains a challenge. Using the ancient air enclosed in polar ice cores, we present the first 800,000-year record of triple isotopic ratios of atmospheric oxygen, which reflects past global biosphere productivity. We observe that global biosphere productivity in the past eight glacial intervals was lower than that in the preindustrial era and that, in most cases, it starts to increase millennia before deglaciations. Both variations occur concomitantly with CO2 changes, implying a dominant control of CO2 on global biosphere productivity that supports a pervasive negative feedback under the glacial climate.

2.
Nat Commun ; 11(1): 2112, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355168

ABSTRACT

Significant changes in atmospheric CO2 over glacial-interglacial cycles have mainly been attributed to the Southern Ocean through physical and biological processes. However, little is known about the contribution of global biosphere productivity, associated with important CO2 fluxes. Here we present the first high resolution record of Δ17O of O2 in the Antarctic EPICA Dome C ice core over Termination V and Marine Isotopic Stage (MIS) 11 and reconstruct the global oxygen biosphere productivity over the last 445 ka. Our data show that compared to the younger terminations, biosphere productivity at the end of Termination V is 10 to 30 % higher. Comparisons with local palaeo observations suggest that strong terrestrial productivity in a context of low eccentricity might explain this pattern. We propose that higher biosphere productivity could have maintained low atmospheric CO2 at the beginning of MIS 11, thus highlighting its control on the global climate during Termination V.

3.
Nat Commun ; 9(1): 2396, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921874

ABSTRACT

Several synergistic mechanisms were likely involved in the last deglacial atmospheric pCO2 rise. Leading hypotheses invoke a release of deep-ocean carbon through enhanced convection in the Southern Ocean (SO) and concomitant decreased efficiency of the global soft-tissue pump (STP). However, the temporal evolution of both the STP and the carbonate counter pump (CCP) remains unclear, thus preventing the evaluation of their contributions to the pCO2 rise. Here we present sedimentary coccolith records combined with export production reconstructions from the Subantarctic Pacific to document the leverage the SO biological carbon pump (BCP) has imposed on deglacial pCO2. Our data suggest a weakening of BCP during the phases of carbon outgassing, due in part to an increased CCP along with higher surface ocean fertility and elevated [CO2aq]. We propose that reduced BCP efficiency combined with enhanced SO ventilation played a major role in propelling the Earth out of the last ice age.

4.
Sci Rep ; 7: 40808, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106091

ABSTRACT

The Valanginian stage (Early Cretaceous) includes an episode of significant environmental changes, which are well defined by a positive δ13C excursion. This globally recorded excursion indicates important perturbations in the carbon cycle, which has tentatively been associated with a pulse in volcanic activity and the formation of the Paraná-Etendeka large igneous province (LIP). Uncertainties in existing age models preclude, however, its positive identification as a trigger of Valanginian environmental changes. Here we report that in Valanginian sediments recovered from a drill core in Wawal (Polish Basin, Poland), and from outcrops in the Breggia Gorge (Lombardian Basin, southern Switzerland), and Orpierre and Angles (Vocontian Basin, SE France), intervals at or near the onset of the positive δ13C excursion are significantly enriched in mercury (Hg). The persistence of the Hg anomaly in Hg/TOC, Hg/phyllosilicate, and Hg/Fe ratios shows that organic-matter scavenging and/or adsorbtion onto clay minerals or hydrous iron oxides only played a limited role. Volcanic outgassing was most probably the primary source of the Hg enrichments, which demonstrate that an important magmatic pulse triggered the Valanginian environmental perturbations.

SELECTION OF CITATIONS
SEARCH DETAIL
...