Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6648, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789764

ABSTRACT

The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.


Subject(s)
RNA Splicing Factors/metabolism , RNA Splicing/physiology , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/metabolism , Cell Nucleolus/metabolism , Cell Survival , Coiled Bodies/metabolism , HeLa Cells , Humans , Methylation , Mitosis , Nuclear Proteins/metabolism , Nuclear Speckles/metabolism , Protein Binding , Protein Stability , RNA Precursors/metabolism , RNA Splicing Factors/genetics , RNA, Small Nucleolar/metabolism , Spliceosomes/metabolism
2.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070455

ABSTRACT

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/genetics , Bone Neoplasms/metabolism , Chondrosarcoma/metabolism , MicroRNAs/pharmacology , Organoids/metabolism , Tumor Microenvironment/genetics , Autophagy/genetics , Bone Neoplasms/genetics , Cell Cycle/genetics , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chondrocytes/metabolism , Chondrosarcoma/genetics , Cisplatin/pharmacology , ErbB Receptors/metabolism , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Organoids/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/metabolism
3.
Nanomaterials (Basel) ; 8(5)2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29695068

ABSTRACT

In recent year, cationic liposomes have gained a lot of attention for siRNA delivery. Despite this, intracellular barriers as endosomal escape and cytosolic delivery of siRNA still represent a challeng, as well as the cytotoxicity due to cationic lipids. To address these issues, we developed four liposomal formulations, composed of two different cationic lipids (DOTAP and DC-Cholesterol) and different ratio of co-lipids (cholesterol and DOPE). The objective is to dissect these impacts on siRNA efficacy and cytotoxicity. Liposomes were complexed to siRNA at six different N/P molar ratios, physico-chemical properties were characterized, and consequently, N/P 2.5, 5 and 10 were selected for in vitro experiments. We have shown that cytotoxicity is influenced by the N/P ratio, the concentration of cationic lipid, as well as the nature of the cationic lipid. For instance, cell viability decreased by 70% with liposomes composed of DOTAP/Cholesterol/DOPE 1/0.75/0.5 at a N/P ratio 10, whereas the same formulation at a N/P ratio of 2.5 was safe. Interestingly, we have observed differences in terms of mRNA knock-down efficiency, whereas the transfection rate was quite similar for each formulation. Liposomes containing 50% of DOPE induced a mRNA silencing of around 80%. This study allowed us to highlight crucial parameters in order to develop lipoplexes which are safe, and which induce an efficient intracytoplasmic release of siRNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...