Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(50): 27358-27366, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38052446

ABSTRACT

Well-defined bimetallic heterogeneous catalysts are not only difficult to synthesize in a controlled manner, but their elemental distributions are also notoriously challenging to define. Knowledge of these distributions is required for both the as-synthesized catalyst and its activated form under reaction conditions, where various types of reconstruction can occur. Success in this endeavor requires observation of the active catalyst via in situ analytical methods. As a step toward this goal, we present a composite material composed of bimetallic nickel-ruthenium nanoparticles supported on a protonated zeolite (Ni-Ru/HZSM-5) and probe its evolution and function as a photoactive carbon dioxide methanation catalyst using in situ X-ray absorption spectroscopy (XAS). The working Ni-Ru/HZSM-5, as a selective and durable photothermal CO2 methanation catalyst, comprises a corona of Ru nanoparticles decorating a Ni nanoparticle core. The specific Ni-Ru interactions in the bimetallic particles were confirmed by in situ XAS, which reveals significant electron transfer from Ni to Ru. The light-harvesting Ni nanoparticle core and electron-accepting Ru nanoparticle corona serve as the CO2 and H2 dissociation centers, respectively. These Ni and Ru nanoparticles also promote synergistic photothermal and hydrogen atom transfer effects. Collectively, these effects enable an associative CO2 methanation reaction pathway while hindering coking and fostering high selectivity toward methane.

2.
Nanoscale ; 16(1): 205-211, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38051125

ABSTRACT

Atomically precise metal nanoclusters are promising candidates for various biomedical applications, including their use as photosensitizers in photodynamic therapy (PDT). However, typical synthetic routes of clusters often result in complex mixtures, where isolating and characterizing pure samples becomes challenging. In this work, a new Au22(Lys-Cys-Lys)16 cluster is synthesized using photochemistry, followed by a new type of light activated, accelerated size-focusing. Fluorescence excitation-emission matrix spectroscopy (EEM) and parallel factor (PARAFAC) analysis have been applied to track the formation of fluorescent species, and to assess optical purity of the final product. Furthermore, excited state reactivity of Au22(Lys-Cys-Lys)16 clusters is studied, and formation of type-I reactive oxygen species (ROS) from the excited state of the clusters is observed. The proposed size-focusing procedure in this work can be easily adapted to conventional cluster synthetic methods, such as borohydride reduction, to provide atomically precise clusters.

3.
Angew Chem Int Ed Engl ; 62(27): e202304470, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37137871

ABSTRACT

Cobalt ferrite (CoFe2 O4 ) spinel has been found to produce C2 -C4 hydrocarbons in a single-step, ambient-pressure, photocatalytic hydrogenation of CO2 with a rate of 1.1 mmol g-1 h-1 , selectivity of 29.8 % and conversion yield of 12.9 %. On stream the CoFe2 O4 reconstructs to a CoFe-CoFe2 O4 alloy-spinel nanocomposite which facilitates the light-assisted transformation of CO2 to CO and hydrogenation of the CO to C2 -C4 hydrocarbons. Promising results obtained from a laboratory demonstrator bode well for the development of a solar hydrocarbon pilot refinery.

4.
Nat Commun ; 13(1): 7205, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418855

ABSTRACT

Light harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO2 can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO2 forms a core-shell c-TiO2@a-TiO2-x(OH)y heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity. Specifically, these SFLPs heterolytically dissociate dihydrogen at room temperature to form charge-balancing protonated hydroxyl groups and hydrides at unsaturated titanium surface sites, which display high reactivity towards CO2 reduction. This crystalline-amorphous heterostructure also boosts light absorption, charge carrier separation and transfer to SFLPs, while prolonged carrier lifetimes and photothermal heat generation further enhance reactivity. The collective results of this study motivate a general approach for catalytically generating sustainable chemicals and fuels through engineered disorder in heterogeneous CO2 photocatalysts.

5.
Nat Commun ; 13(1): 1512, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35314721

ABSTRACT

It has long been known that the thermal catalyst Cu/ZnO/Al2O3(CZA) can enable remarkable catalytic performance towards CO2 hydrogenation for the reverse water-gas shift (RWGS) and methanol synthesis reactions. However, owing to the direct competition between these reactions, high pressure and high hydrogen concentration (≥75%) are required to shift the thermodynamic equilibrium towards methanol synthesis. Herein, a new black indium oxide with photothermal catalytic activity is successfully prepared, and it facilitates a tandem synthesis of methanol at a low hydrogen concentration (50%) and ambient pressure by directly using by-product CO as feedstock. The methanol selectivities achieve 33.24% and 49.23% at low and high hydrogen concentrations, respectively.

6.
Nano Lett ; 21(3): 1311-1319, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33493396

ABSTRACT

Herein is developed a ternary heterostructured catalyst, based on a periodic array of 1D TiN nanotubes, with a TiO2 nanoparticulate intermediate layer and a In2O3-x(OH)y nanoparticulate shell for improved performance in the photocatalytic reverse water gas shift reaction. It is demonstrated that the ordering of the three components in the heterostructure sensitively determine its activity in CO2 photocatalysis. Specifically, TiN nanotubes not only provide a photothermal driving force for the photocatalytic reaction, owing to their strong optical absorption properties, but they also serve as a crucial scaffold for minimizing the required quantity of In2O3-x(OH)y nanoparticles, leading to an enhanced CO production rate. Simultaneously, the TiO2 nanoparticle layer supplies photogenerated electrons and holes that are transferred to active sites on In2O3-x(OH)y nanoparticles and participate in the reactions occurring at the catalyst surface.

7.
Nat Commun ; 11(1): 6095, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257718

ABSTRACT

The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H2 and CO2 molecules and enable efficient gas-phase CO2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In3+ ions in In2O3 by single-site Bi3+ ions, thereby enhancing the propensity to activate CO2 molecules. The so-formed BixIn2-xO3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In2O3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of BixIn2-xO3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO2 photocatalysis, another step towards the vision of the solar CO2 refinery.

8.
Small ; 16(49): e2005754, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33201581

ABSTRACT

Nanoscale titanium nitride TiN is a metallic material that can effectively harvest sunlight over a broad spectral range and produce high local temperatures via the photothermal effect. Nanoscale indium oxide-hydroxide, In2 O3- x (OH)y , is a semiconducting material capable of photocatalyzing the hydrogenation of gaseous CO2 ; however, its wide electronic bandgap limits its absorption of photons to the ultraviolet region of the solar spectrum. Herein, the benefits of both nanomaterials in a ternary heterostructure: TiN@TiO2 @In2 O3- x (OH)y are combined. This heterostructured material synergistically couples the metallic TiN and semiconducting In2 O3- x (OH)y phases via an interfacial semiconducting TiO2 layer, allowing it to drive the light-assisted reverse water gas shift reaction at a conversion rate greatly surpassing that of its individual components or any binary combinations thereof.

9.
Nat Commun ; 11(1): 5149, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33051460

ABSTRACT

Akin to single-site homogeneous catalysis, a long sought-after goal is to achieve reaction site precision in heterogeneous catalysis for chemical control over patterns of activity, selectivity and stability. Herein, we report on metal phosphides as a class of material capable of realizing these attributes and unlock their potential in solar-driven CO2 hydrogenation. Selected as an archetype, Ni12P5 affords a structure based upon highly dispersed nickel nanoclusters integrated into a phosphorus lattice that harvest light intensely across the entire solar spectral range. Motivated by its panchromatic absorption and unique linearly bonded nickel-carbonyl-dominated reaction route, Ni12P5 is found to be a photothermal catalyst for the reverse water gas shift reaction, offering a CO production rate of 960 ± 12 mmol gcat-1 h-1, near 100% selectivity and long-term stability. Successful extension of this idea to Co2P analogs implies that metal phosphide materials are poised as a universal platform for high-rate and highly selective photothermal CO2 catalysis.

10.
Small ; 16(35): e2001435, 2020 09.
Article in English | MEDLINE | ID: mdl-32755007

ABSTRACT

1D silicon-based nanomaterials, renowned for their unique chemical and physical properties, have enabled the development of numerous advanced materials and biomedical technologies. Their production often necessitates complex and expensive equipment, requires hazardous precursors and demanding experimental conditions, and involves lengthy processes. Herein, a flash solid-solid (FSS) process is presented for the synthesis of silicon oxide nanorods completed within seconds. The innovative features of this FSS process include its simplicity, speed, and exclusive use of solid precursors, comprising hydrogen-terminated silicon nanosheets and a metal nitrate catalyst. Advanced electron microscopy and X-ray spectroscopy analyses favor a solid-liquid-solid reaction pathway for the growth of the silicon oxide nanorods with vapor-liquid-solid characteristics.

11.
Nat Commun ; 11(1): 2432, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415078

ABSTRACT

Nanostructured forms of stoichiometric In2O3 are proving to be efficacious catalysts for the gas-phase hydrogenation of CO2. These conversions can be facilitated using either heat or light; however, until now, the limited optical absorption intensity evidenced by the pale-yellow color of In2O3 has prevented the use of both together. To take advantage of the heat and light content of solar energy, it would be advantageous to make indium oxide black. Herein, we present a synthetic route to tune the color of In2O3 to pitch black by controlling its degree of non-stoichiometry. Black indium oxide comprises amorphous non-stoichiometric domains of In2O3-x on a core of crystalline stoichiometric In2O3, and has 100% selectivity towards the hydrogenation of CO2 to CO with a turnover frequency of 2.44 s-1.

12.
Faraday Discuss ; 222(0): 424-432, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32108188

ABSTRACT

Silicene is a relatively new member of the growing family of two-dimensional single-element materials. Both top-down and bottom-up approaches provide access to silicene, the former via vapor deposition on a substrate and the latter via exfoliation of the layered CaSi2 precursor. Most top-down research has been concerned with understanding the various electronic, optical, magnetic, mechanical, electrical, thermal transport and gas-adsorption properties of silicene. By contrast, the focus on bottom-up silicene has primarily been on its synthesis, structure and chemical properties as they relate to its function and utility. Herein, emphasis is placed on the bottom-up strategy because of its scalability and the ease of subsequent silicene modification, with both qualities being important prerequisites for heterogeneous catalysis applications. In this context, synthetic freestanding silicene exists as single sheets or multilayer assemblies, depending on the CaSi2 exfoliation synthesis conditions. The structure of a sheet comprises three connected chair-configuration silicon 6-rings. This connectivity creates buckled sheets in which the hybridization around the unsaturated silicon atoms is sp2-sp3. By adjusting the CaSi2 exfoliation synthesis conditions, either layered silane (Si6H6) or siloxene (Si6H3(OH)3) nanosheets can be obtained. In our studies, we have explored the nucleation and growth of different transition metal nanoparticles on and within the layer spaces of these nanosheets, and explored their thermochemical and photochemical reactivity in CO2 hydrogenation reactions. An overview of these findings, related works and a new-and-optimized catalyst are provided in this article.

13.
Angew Chem Int Ed Engl ; 58(42): 14850-14854, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31410950

ABSTRACT

Black liquor, an industrial waste product of papermaking, is primarily used as a low-grade combustible energy source. Despite its high lignin content, the potential utility of black liquor as a feedstock in products manufacturing, remains to be exploited. Demonstrated here in is the use of black liquor as a primary feed-stock for synthesizing graphene quantum dots that exhibit both up-conversion and photoluminescence when excited using visible/near-infrared radiation, thereby enabling the photosensitization of ultraviolet-absorbing TiO2 nanosheets. In addition, these graphene quantum dots can trap photo-generated electrons to realize the effective separation of electron-hole pairs. Together, these two processes facilitate the solar-powered generation of H2 from H2 O, and CO from H2 O-CO2 , using broadband solar radiation.

14.
Nat Commun ; 10(1): 3169, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320620

ABSTRACT

The extraction and combustion of fossil natural gas, consisting primarily of methane, generates vast amounts of greenhouse gases that contribute to climate change. However, as a result of recent research efforts, "solar methane" can now be produced through the photocatalytic conversion of carbon dioxide and water to methane and oxygen. This approach could play an integral role in realizing a sustainable energy economy by closing the carbon cycle and enabling the efficient storage and transportation of intermittent solar energy within the chemical bonds of methane molecules. In this article, we explore the latest research and development activities involving the light-assisted conversion of carbon dioxide to methane.

15.
Nat Commun ; 10(1): 2608, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197151

ABSTRACT

Two-dimensional (2D) materials are of considerable interest for catalyzing the heterogeneous conversion of CO2 to synthetic fuels. In this regard, 2D siloxene nanosheets, have escaped thorough exploration, despite being composed of earth-abundant elements. Herein we demonstrate the remarkable catalytic activity, selectivity, and stability of a nickel@siloxene nanocomposite; it is found that this promising catalytic performance is highly sensitive to the location of the nickel component, being on either the interior or the exterior of adjacent siloxene nanosheets. Control over the location of nickel is achieved by employing the terminal groups of siloxene and varying the solvent used during its nucleation and growth, which ultimately determines the distinct reaction intermediates and pathways for the catalytic CO2 methanation. Significantly, a CO2 methanation rate of 100 mmol gNi-1 h-1 is achieved with over 90% selectivity when nickel resides specifically between the sheets of siloxene.

16.
Adv Sci (Weinh) ; 6(8): 1801903, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-31016111

ABSTRACT

This work aims to provide an overview of producing value-added products affordably and sustainably from greenhouse gases (GHGs). Methanol (MeOH) is one such product, and is one of the most widely used chemicals, employed as a feedstock for ≈30% of industrial chemicals. The starting materials are analogous to those feeding natural processes: water, CO2, and light. Innovative technologies from this effort have global significance, as they allow GHG recycling, while providing society with a renewable carbon feedstock. Light, in the form of solar energy, assists the production process in some capacity. Various solar strategies of continually increasing technology readiness levels are compared to the commercial MeOH process, which uses a syngas feed derived from natural gas. These strategies include several key technologies, including solar-thermochemical, photochemical, and photovoltaic-electrochemical. Other solar-assisted technologies that are not yet commercial-ready are also discussed. The commercial-ready technologies are compared using a technoeconomic analysis, and the scalability of solar reactors is also discussed in the context of light-incorporating catalyst architectures and designs. Finally, how MeOH compares against other prospective products is briefly discussed, as well as the viability of the most promising solar MeOH strategy in an international context.

17.
Nat Mater ; 17(11): 1033-1039, 2018 11.
Article in English | MEDLINE | ID: mdl-30250176

ABSTRACT

Bimetallic nanoparticles with tailored structures constitute a desirable model system for catalysts, as crucial factors such as geometric and electronic effects can be readily controlled by tailoring the structure and alloy bonding of the catalytic site. Here we report a facile colloidal method to prepare a series of platinum-gold (PtAu) nanoparticles with tailored surface structures and particle diameters on the order of 7 nm. Samples with low Pt content, particularly Pt4Au96, exhibited unprecedented electrocatalytic activity for the oxidation of formic acid. A high forward current density of 3.77 A mgPt-1 was observed for Pt4Au96, a value two orders of magnitude greater than those observed for core-shell structured Pt78Au22 and a commercial Pt nanocatalyst. Extensive structural characterization and theoretical density functional theory simulations of the best-performing catalysts revealed densely packed single-atom Pt surface sites surrounded by Au atoms, which suggests that their superior catalytic activity and selectivity could be attributed to the unique structural and alloy-bonding properties of these single-atomic-site catalysts.

18.
Adv Sci (Weinh) ; 5(6): 1700732, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938164

ABSTRACT

Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H2 and CO2, and thereby creating a new strategy for CO2 reduction. Here, the photocatalytic CO2 reduction behavior of defect-laden indium oxide (In2O3-x (OH) y ) is greatly enhanced through isomorphous substitution of In3+ with Bi3+, providing fundamental insights into the catalytically active surface FLPs (i.e., In-OH···In) and the experimentally observed "volcano" relationship between the CO production rate and Bi3+ substitution level. According to density functional theory calculations at the optimal Bi3+ substitution level, the 6s2 electron pair of Bi3+ hybridizes with the oxygen in the neighboring In-OH Lewis base site, leading to mildly increased Lewis basicity without influencing the Lewis acidity of the nearby In Lewis acid site. Meanwhile, Bi3+ can act as an extra acid site, serving to maximize the heterolytic splitting of reactant H2, and results in a more hydridic hydride for more efficient CO2 reduction. This study demonstrates that isomorphous substitution can effectively optimize the reactivity of surface catalytic active sites in addition to influencing optoelectronic properties, affording a better understanding of the photocatalytic CO2 reduction mechanism.

19.
J Am Chem Soc ; 140(8): 2926-2932, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29411604

ABSTRACT

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.

20.
Adv Mater ; 29(37)2017 Oct.
Article in English | MEDLINE | ID: mdl-28762572

ABSTRACT

Most electrocatalysts for the ethanol oxidation reaction suffer from extremely limited operational durability and poor selectivity toward the CC bond cleavage. In spite of tremendous efforts over the past several decades, little progress has been made in this regard. This study reports the remarkable promoting effect of Ni(OH)2 on Pd nanocrystals for electrocatalytic ethanol oxidation reaction in alkaline solution. A hybrid electrocatalyst consisting of intimately mixed nanosized Pd particles, defective Ni(OH)2 nanoflakes, and a graphene support is prepared via a two-step solution method. The optimal product exhibits a high mass-specific peak current of >1500 mA mg-1Pd , and excellent operational durability forms both cycling and chronoamperometric measurements in alkaline solution. Most impressively, this hybrid catalyst retains a mass-specific current of 440 mA mg-1 even after 20 000 s of chronoamperometric testing, and its original activity can be regenerated via simple cyclic voltammetry cycles in clean KOH. This great catalyst durability is understood based on both CO stripping and in situ attenuated total reflection infrared experiments suggesting that the presence of Ni(OH)2 alleviates the poisoning of Pd nanocrystals by carbonaceous intermediates. The incorporation of Ni(OH)2 also markedly shifts the reaction selectivity from the originally predominant C2 pathway toward the more desirable C1 pathway, even at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...