Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 37(3): 164-74, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19293329

ABSTRACT

The study of spontaneous mutations in mice over the last century has been fundamental to our understanding of normal physiology and mechanisms of disease. Here we studied the phenotype and genotype of a novel mouse model we have called the New Zealand Ginger (NZG/Kgm) mouse. NZG/Kgm mice are very large, rapidly growing, ginger-colored mice with pink eyes. Breeding NZG/Kgm mice with CAST/Ei or C57BL/6J mice showed that the ginger coat colour is a recessive trait, while the excessive body weight and large body size exhibit a semidominant pattern of inheritance. Backcrossing F1 (NZG/Kgm x CAST/Ei) to NZG/Kgm mice to produce the N2 generation determined that the NZG/Kgm mouse has two recessive pigmentation variant genes (oca2(p) and tyrp-1(b)) and that the tyrp-1(b) gene locus associates with large body size. Three coat colors appeared in the N2 generation; ginger, brown, and dark. Strikingly, N2 male coat colour associated with body weight; the brown-colored mice weighed the most followed by ginger and then dark. The male brown coat-colored offspring reached adult body weights indistinguishable from NZG/Kgm males. The large NZG/Kgm mouse body size is a result of excessive lean body mass since these mice are not obese or diabetic. NZG/Kgm mice exhibit an unusual pattern of fat distribution; compared with other mouse strains they have disproportionately higher amounts of subcutaneous and gonadal fat. These mice are susceptible to high-fat diet-induced obesity but are resistant to high-fat diet-induced diabetes. We propose NZG/Kgm mice as a novel model to delineate gene(s) that regulate 1) growth and metabolism, 2) resistance to Type 2 diabetes, and 3) preferential fat deposition in the subcutaneous and gonadal areas.


Subject(s)
Body Weight/genetics , Hair Color/genetics , Membrane Glycoproteins/genetics , Models, Animal , Oxidoreductases/genetics , Adipose Tissue/metabolism , Animals , Breeding , Dietary Fats/administration & dosage , Female , Genetic Predisposition to Disease , Genotype , Gonads/metabolism , Inbreeding , Inguinal Canal , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred Strains , Obesity/etiology , Phenotype , Skin Pigmentation/genetics
2.
Mol Immunol ; 43(8): 1221-31, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16102831

ABSTRACT

Despite considerable differences in primary structure, the chemokines eotaxin-1/CCL11, eotaxin-2/CCL24 and eotaxin-3/CCL26 signal via a single receptor, CCR3, but exhibit different potencies and efficacies. To examine receptor/ligand interactions in more detail, we performed alanine scanning mutagenesis of 21 charged residues within the extracellular loops (ECLs) of CCR3. Following transient expression in the L1.2 cell line, CCR3 mutants were assessed for their ability to be expressed at the cell surface, bind CCL11 and induce chemotactic responses to CCL11, CCL24 and CCL26. The majority of constructs were well expressed at the cell surface and bound CCL11 with low nanomolar affinity. Exceptions to this rule included the mutants E175A and E176A (ECL2) which were poorly expressed and responded weakly to all three ligands in chemotaxis assays. In contrast, the mutants K26 (amino-terminus) E179 and E180 (ECL2) responded in chemotaxis assays to CCL11 and CCL24, but not to CCL26. Mutation of residues in ECL3 was informative, with the D272A, K277A and D280A mutants exhibiting reduced chemotactic responses to two or more of the three ligands examined, despite being expressed on the cell surface at levels similar to WT CCR3. This suggests a major role for ECL3 in the recognition of all three eotaxins. In summary, distinct acidic and basic residues within CCR3 determine both receptor expression and activation by the eotaxins. Determining how these chemokines interact with their receptor at the molecular level should increase our understanding of the process of chemokine receptor activation.


Subject(s)
Alanine/genetics , Chemokines, CC/metabolism , Mutagenesis/genetics , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Amino Acid Sequence , Animals , Cell Line , Chemokine CCL11 , Gene Expression , Mice , Models, Molecular , Molecular Sequence Data , Phenotype , Point Mutation/genetics , Protein Binding , Protein Structure, Tertiary , Receptors, CCR3 , Receptors, Chemokine/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...