Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 254: 121360, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422695

ABSTRACT

Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.


Subject(s)
Cetirizine , Ecosystem , Animals , Humans , Bioaccumulation , Telmisartan , Venlafaxine Hydrochloride , Invertebrates , Fresh Water , Carbamazepine , Water , Pharmaceutical Preparations
2.
Water Res ; 250: 121053, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159539

ABSTRACT

Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.


Subject(s)
Ecosystem , Food Chain , Animals , Climate , Phytoplankton , Zooplankton , Lakes , Pharmaceutical Preparations
3.
Sci Total Environ ; 897: 165419, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37429477

ABSTRACT

Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Neonicotinoids/toxicity , Invertebrates , Insecticides/analysis , Nitro Compounds/toxicity , Fresh Water
4.
Aquat Toxicol ; 254: 106351, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423469

ABSTRACT

Neonicotinoid insecticides represent nearly a quarter of the global insecticide market and are widely used in agriculture but also for lawn, garden care, and pest control. They are highly water-soluble, persistent in soil, may enter the aquatic compartment via spray drift, runoff, or leaching, and contribute to downstream aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other groups, such as crustaceans, may also be affected. Furthermore, most studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates. The present study was designed to test potential toxicological effects of an environmentally relevant mixture of imidacloprid, clothianidin, and thiamethoxam on populations of Ceriodaphnia dubia and Daphnia magna under controlled conditions. Chronic toxicity tests were conducted in the laboratory, and survival and reproduction were measured for both species under environmentally relevant, 'worst-case' concentrations for each compound separately and in combination as pesticides are often detected as mixtures in aquatic environments. The neonicotinoids did not appear to affect the survival of C. dubia and D. magna. Reproduction of C. dubia was affected by the mixture whereas all three individual insecticides as well as the mixture caused a significant reduction in the reproduction of D. magna. Our results highlight the complexity of pesticide toxicity and show that traditional toxicological approaches such as, acute mortality studies and tests with single compounds can underestimate negative impacts that occur in the environment.


Subject(s)
Cladocera , Insecticides , Water Pollutants, Chemical , Animals , Insecticides/toxicity , Daphnia , Water Pollutants, Chemical/toxicity , Neonicotinoids/toxicity , Thiamethoxam/pharmacology , Nitro Compounds/toxicity
6.
Sci Total Environ ; 553: 486-494, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26930319

ABSTRACT

The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices.


Subject(s)
Bacterial Proteins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insecticides/toxicity , Invertebrates/physiology , Mosquito Control/methods , Pest Control, Biological/methods , Wetlands , Animals , Bacillus thuringiensis Toxins , Ecosystem , Environmental Monitoring , France
7.
Ecotoxicol Environ Saf ; 115: 272-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25728359

ABSTRACT

To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs.


Subject(s)
Bacillus thuringiensis , Chironomidae/drug effects , Insecticides/toxicity , Macrolides/toxicity , Mosquito Control , Animals , Chironomidae/growth & development , Drug Combinations , Population Dynamics , Wetlands
8.
Microb Ecol ; 67(3): 576-86, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24402370

ABSTRACT

Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.


Subject(s)
Bacillus thuringiensis , Environment , Mosquito Control , Animals , Culicidae/microbiology , France , Larva , Spores, Bacterial
9.
Ecotoxicol Environ Saf ; 74(4): 800-10, 2011 May.
Article in English | MEDLINE | ID: mdl-21497397

ABSTRACT

Chitobiase is involved in exoskeleton degradation and recycling during the moulting process in arthropods. In aquatic species, the moulting fluid is released into the aqueous environment, and chitobiase activity present therein can be used to follow the dynamics of arthropod populations. Here, chitobiase activity was used for monitoring the impact of mosquito candidate larvicides on Daphnia pulex and Daphnia magna under laboratory conditions. Both species were exposed to spinosad (2, 4, 8 µg L(-1)) and diflubenzuron (0.2, 0.4, 0.8 µg L(-1)) for 14 days. Bacillus thuringiensis var. israelensis (Bti; 0.25, 0.5, 1 µL L(-1)) was used as the reference larvicide. Chitobiase activity, adult survival, individual growth and fecundity, expressed as the number of neonates produced, were measured every 2 days. Average Exposure Concentrations of spinosad were ten-fold lower than the nominal concentrations, whereas only a slight deviation was observed for diflubenzuron. In contrast to Bti, spinosad and diflubenzuron significantly affected both species in terms of adult survival, and production of neonates. As compared to D. pulex, D. magna was more severely affected by diflubenzuron, at low and medium concentrations, with reduced adult growth and much lower chitobiase activity. Chitobiase activity was positively correlated with the individual body length, number of neonates produced between two consecutive observation dates, and number of females and neonates. In addition, the significant positive correlations between chitobiase activity measured on the last sampling date before the first emission of neonates and the cumulative number of neonates produced during the whole observation period strongly support the potential of the activity of this chitinolytic enzyme as a proxy for assessing the dynamics of arthropod populations exposed to larvicides used for mosquito control.


Subject(s)
Acetylglucosaminidase/metabolism , Daphnia/drug effects , Diflubenzuron/toxicity , Insecticides/toxicity , Macrolides/toxicity , Adult , Animals , Bacillus thuringiensis , Biomarkers/metabolism , Daphnia/growth & development , Drug Combinations , Female , Humans , Infant, Newborn , Reproduction/drug effects , Risk Assessment , Water Pollutants, Chemical
10.
Ecotoxicology ; 19(7): 1224-37, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20552396

ABSTRACT

Because exposure to toxicants not only results in mortality but also in multiple sublethal effects, the use of life-table data appears particularly suitable to assess global effects on exposed populations. The present study uses a life table response approach to assess population-level effects of two insecticides used against mosquito larvae, spinosad (8 µg/l) and Bacillus thuringiensis var. israelensis (Bti, 0.5 µl/l), on two non target species, Daphnia pulex and Daphnia magna (Crustacea: Cladocera), under laboratory versus field microcosms conditions. Population growth rates were inferred from life table data and Leslie matrices under a model with resource limitation (ceiling). These were further used to estimate population risks of extinction under each tested condition, using stochastic simulations. In laboratory conditions, analyses performed for each species confirmed the significant negative effect of spinosad on survival, mean time at death, and fecundity as compared to controls and Bti-treated groups; for both species, population growth rate λ was lower under exposure to spinosad. In field microcosms, 2 days after larvicide application, differences in population growth rates were observed between spinosad exposure conditions, and control and Bti exposure conditions. Simulations performed on spinosad-exposed organisms led to population extinction (minimum abundance = 0, extinction risk = 1), and this was extremely rapid (time to quasi-extinction = 4.1 one-week long steps, i.e. one month). Finally, D. magna was shown to be more sensitive than D. pulex to spinosad in the laboratory, and the effects were also detectable through field population demographic simulations.


Subject(s)
Daphnia/drug effects , Insecticides/toxicity , Macrolides/toxicity , Animals , Bacillus thuringiensis , Daphnia/physiology , Drug Combinations , Female , Larva/drug effects , Larva/physiology , Life Tables , Mosquito Control , Population Growth , Stochastic Processes , Survival Analysis
11.
J Am Mosq Control Assoc ; 19(4): 353-60, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14710736

ABSTRACT

A new method is proposed that avoids manual counting of mosquito larvae in order to estimate larval abundance in the field. This method is based on the visual comparison between abundance, in a standardized sampling tray (called an abacus), with 5 (abacus 5) or 10 (abacus 10) diagrammatically prepared abundance classes. Accuracy under laboratory and field conditions and individual bias have been evaluated and both abaci provide a reliable estimation of abundance in both conditions. There is no individual bias, whether people are familiar or not with its use. They could also be used for a quick estimation of larval treatment effectiveness, for the study of population dynamics and spatial distribution.


Subject(s)
Culicidae , Animals , Entomology/methods , Larva , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...