Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 66(3-5): 223-5, 2001.
Article in English | MEDLINE | ID: mdl-11179729

ABSTRACT

Selected 20-epi and 20-normal vitamin D(3) analogs were studied. First, point mutations were introduced into human vitamin D receptor (VDR) to identify residues important for ligand binding. In helices three, four and five, His229, Asp232, Ser237 and Arg274 seem to have an important role in the binding of calcitriol. Surprisingly, the 20-epi analog MC 1288 did not bind to Ser237. Second, the effects of analogs on VDR degradation were studied. The transcriptionally active 20-epi analogs protected VDR against degradation more efficiently than the 20-normal analogs and calcitriol. With proteasome inhibitor MG-132 formation of Sug-1-RXRbeta-VDR-VDRE complex was detected. The 20-epi analogs effectively prevented its formation. Thus, the 20-epi analogs induce a VDR conformation, which prevents binding of factors mediating VDR degradation. Third, the analogs were found to be powerful regulators of cell cycle progression in MG-63 cells. They arrested cell cycle in the G0/G1 phase at lower concentrations and earlier time points than calcitriol. This was accompanied by hypophosphorylation of Rb followed by strong inhibition of Cdk2 activity. This correlated with increased levels of p27. Cdk2 and cyclin E levels were downregulated but those of p21 and cyclin D1 were not affected. Thus, a similar sequence of events with calcitriol and the analogs in inhibiting MG-63 cell growth was detected but the analogs had much longer lasting and stronger effects than calcitriol. A unifying scheme for the varying effects of vitamin D(3) analogs is presented.


Subject(s)
Cholecalciferol/analogs & derivatives , Cholecalciferol/pharmacology , Animals , Binding Sites/genetics , Cell Cycle/drug effects , Humans , Receptors, Calcitriol/drug effects , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
2.
Biochem Biophys Res Commun ; 264(2): 478-82, 1999 Oct 22.
Article in English | MEDLINE | ID: mdl-10529388

ABSTRACT

The 3-D structure of the human vitamin D(3) receptor has not been solved to date. To study the conformation of the ligand binding pocket and the amino acid residues important for binding of calcitriol and its synthetic 20-epi analog MC1288, we have introduced several point mutations into putative helices 4 and 5 of human vitamin D(3) receptor by site-directed mutagenesis. The amino acid residues Ser256, Glu257, Asp258, Gln259, Lys264, Ser265, Ser266, Glu269, Arg274, Ser278, and Phe279 were substituted by alanine. Our results suggest that Arg274 is important for the binding of calcitriol and probably also for the binding of the synthetic vitamin D analog MC1288, whereas Asp258, Gln259, Glu269, and Phe279 may have an important role in stabilizing the conformation of hVDR after ligand binding.


Subject(s)
Calcitriol/metabolism , Protein Conformation , Receptors, Calcitriol/genetics , Alanine/chemistry , Amino Acid Sequence , Binding Sites , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Receptors, Calcitriol/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...