Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Science ; 380(6645): 644-651, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37167405

ABSTRACT

Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400°C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600°C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.

2.
Small ; 17(51): e2104356, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34791798

ABSTRACT

Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.

3.
J Phys Chem Lett ; 12(41): 10212-10217, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34647748

ABSTRACT

To understand corrosion, energy storage, (electro)catalysis, etc., obtaining chemical information on the solid-liquid interface is crucial but remains extremely challenging. Here, X-ray absorption spectroscopy (XAS) is used to study the solid-liquid interface between TiO2 and H2O. A thin film (6.7 nm) of TiO2 is deposited on an X-ray-transparent SiNx window, acting as the working electrode in a three-electrode flow cell. The spectra are collected based on the electron emission resulting from the decay of the X-ray-induced core-hole-excited atoms, which we show is sensitive to the solid-liquid interface within a few nm. The drain currents measured at the working and counter electrodes are identical but of opposite sign. With this method, we found that the water layer next to anatase is spectroscopically similar to ice. This result highlights the potential of electron-yield XAS to obtain chemical and structural information with a high sensitivity for the species at the electrode-electrolyte interface.

4.
ACS Omega ; 6(14): 9638-9652, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869944

ABSTRACT

Perovskites of the ABO3 type, such as LaMnO3, can be used as air electrodes in solid oxide fuel cells and electrolyzers. Their properties can be tuned by A- and B-site substitutions. The influence of La substitution by Ca on the oxygen nonstoichiometry has been investigated frequently, but the results depend highly on the synthesis and atmospheric conditions. In this work, a series of La1-x Ca x MnO3+δ (x = 0-0.5) was synthesized using conventional solid-state synthesis under an air atmosphere. The structures of the materials were studied in detail with powder X-ray diffraction. The initial oxygen nonstoichiometries were determined using thermogravimetric reduction. The samples were subsequently analyzed in terms of defect chemistry in dependence of temperature, atmosphere, and Ca content via thermogravimetric analysis. The changes in the manganese charge states were investigated by X-ray absorption near-edge spectroscopy experiments. The influence of intrinsic and extrinsic effects on the Mn-valence state of the differently Ca-substituted samples as calculated from thermogravimetric analysis and as determined directly from X-ray absorption near-edge spectroscopy is presented.

5.
Inorg Chem ; 60(6): 3719-3728, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33621076

ABSTRACT

New heterometallic In-Fe alkoxides [InFe(OtBu)4(PyTFP)2] (1), [InFe2(OneoPen)9(Py)] (2), and [InFe3(OneoPen)12] (3) were synthesized and structurally characterized. The arrangement of metal centers in mixed-metal framework was governed by the In:Fe ratio and the coordination preferences of Fe(III) and In(III) centers to be in tetrahedral and octahedral environments, respectively. 3 displayed a star-shaped so-called "Mitsubishi" motif with the central In atom coordinated with three tetrahedral {Fe(OneoPen)4}- anionic units. The deterministic structural influence of the larger In atom was evident in 1 and 2 which displayed the coordination of neutral coligands to achieve the desired coordination number. Thermal decomposition studies of compounds 1-3 under inert conditions with subsequent powder diffraction studies revealed the formation of Fe2O3 and In2O3 in the case of 3 and 2, whereas 1 intriguingly produced elemental In and Fe. In contrary, the thermal decomposition of 1-3 under ambient conditions produced a ternary oxide, InFeO3, with additional Fe2O3 present as a secondary phase in a different stoichiometric ratio predetermined through the In:Fe ratio in 2 and 3. The intimate mixing of different phases in InFeO3/Fe2O3 nanocomposites was confirmed by transmission electron microscopy of solid residues obtained after the decomposition of 1 and 2. The pure InFeO3 particles demonstrated ferromagnetic anomalies around 170 K as determined by temperature-dependent field-cooled and zero-field-cooled magnetization experiments. A first-order magnetic transition with an increase in the ZFC measurements was explained by temperature-induced reduction of the Fe-Fe distance and the corresponding increase in superexchange.

6.
Nat Mater ; 20(5): 674-682, 2021 May.
Article in English | MEDLINE | ID: mdl-33432142

ABSTRACT

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

7.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33263190

ABSTRACT

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

8.
J Phys Chem Lett ; 10(20): 6253-6259, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31500420

ABSTRACT

Magnetic field-assisted CVD offers a direct pathway to manipulate the evolution of microstructure, phase composition, and magnetic properties of the as-prepared film. We report on the role of applied magnetic fields (0.5 T) during a cold-wall CVD deposition of iron oxide from [FeIII(OtBu)3]2 leading to higher crystallinity, larger particulates, and better out-of-plane magnetic anisotropy, if compared with zero-field depositions. Whereas selective formation of homogeneous magnetite films was observed for the field-assisted process, coexistence of hematite and amorphous iron(III) oxide was confirmed under zero-field conditions. Comparison of the coercive field (11 vs 60 mT) indicated lower defect concentration for the field-assisted process with nearly superparamagnetic behavior. X-ray photoemission electron microscopy (X-PEEM) in absorption mode at the O-K and Fe-L3,2 edges confirmed the selective formation of magnetite (field-assisted) and hematite (zero-field) with coexisting amorphous phases, respectively, emphasizing the importance of field-matter interactions in the phase-selective synthesis of magnetic thin films.

9.
J Chem Phys ; 151(4): 044701, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31370552

ABSTRACT

Combining experimental spectroscopy and hybrid density functional theory calculations, we show that the incorporation of fluoride ions into a prototypical reducible oxide surface, namely, ceria(111), can induce a variety of nontrivial changes to the local electronic structure, beyond the expected increase in the number of Ce3+ ions. Our resonant photoemission spectroscopy results reveal new states above, within, and below the valence band, which are unique to the presence of fluoride ions at the surface. With the help of hybrid density functional calculations, we show that the different states arise from fluoride ions in different atomic layers in the near surface region. In particular, we identify a structure in which a fluoride ion substitutes for an oxygen ion at the surface, with a second fluoride ion on top of a surface Ce4+ ion giving rise to F 2p states which overlap the top of the O 2p band. The nature of this adsorbate F--Ce4+ resonant enhancement feature suggests that this bond is at least partially covalent. Our results demonstrate the versatility of anion doping as a potential means of tuning the valence band electronic structure of ceria.

10.
J Phys Condens Matter ; 30(46): 465001, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30247154

ABSTRACT

Thin epitaxial layers of tungsten oxide on metal substrates are suitable as model systems for investigation of chemical reactivity and catalytic properties. However, the ability to prepare epitaxial tungsten oxide model system in situ is quite rare. Here we present a method to prepare highly ordered tungsten oxide thin film on a Cu(1 1 0) single crystal substrate using physical vapor deposition in a reactive atmosphere of atomic oxygen. The oxygen induced reconstruction of the copper substrate gives rise to unique self-organized 1D structures of tungsten oxide parallel with the Cu[1 -1 0] crystallographic direction. Utilizing a combination of photoemission spectroscopy and density functional theory calculations we reveal emergent physicochemical properties related to the low-dimensionality of the system. Specifically, we observe a support mediated charge redistribution at the interface and a momentum dependent modulation of the valence-band electronic structure. The unusual character of the 1D oxide nanostructures on Cu(1 1 0) surface opens up a unique avenue for preparation of tungsten oxide-based functionalized nanostructures and provides options for further investigation of the fundamental properties of tungsten oxide.

11.
J Am Chem Soc ; 139(50): 18138-18141, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29148738

ABSTRACT

Studies of the electrified solid-liquid interfaces are crucial for understanding biological and electrochemical systems. Until recently, use of photoemission electron microscopy (PEEM) for such purposes has been hampered by incompatibility of the liquid samples with ultrahigh vacuum environment of the electron optics and detector. Here we demonstrate that the use of ultrathin electron transparent graphene membranes, which can sustain large pressure differentials and act as a working electrode, makes it possible to probe electrochemical reactions in operando in liquid environments with PEEM.

12.
J Am Chem Soc ; 139(41): 14501-14510, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28901755

ABSTRACT

Functionalization of polyoxotungstates with organoarsonate coligands enabling surface decoration was explored for the triangular cluster architectures of the composition [CoII9(H2O)6(OH)3(p-RC6H4AsVO3)2(α-PV2WVI15O56)3]25- ({Co9(P2W15)3}, R = H or NH2), isolated as Na25[Co9(OH)3(H2O)6(C6H5AsO3)2(P2W15O56)3]·86H2O (Na-1; triclinic, P1̅, a = 25.8088(3) Å, b = 25.8336(3) Å, c = 27.1598(3) Å, α = 78.1282(11)°, ß = 61.7276(14)°, γ = 60.6220(14)°, V = 13888.9(3) Å3, Z = 2) and Na25[Co9(OH)3(H2O)6(H2NC6H4AsO3)2(P2W15O56)3]·86H2O (Na-2; triclinic, P1̅, a = 14.2262(2) Å, b = 24.8597(4) Å, c = 37.9388(4) Å, α = 81.9672(10)°, ß = 87.8161(10)°, γ = 76.5409(12)°, V = 12920.6(3) Å3, Z = 2). The axially oriented para-aminophenyl groups in 2 facilitate the formation of self-assembled monolayers on gold surfaces and thus provide a viable molecular platform for charge transport studies of magnetically functionalized polyoxometalates. The title systems were isolated and characterized in the solid state, in aqueous solutions, and on metal surfaces. Using conducting tip atomic force microscopy, the energies of {Co9(P2W15)3} frontier molecular orbitals in the surface-bound state were found to directly correlate with cyclic voltammetry data in aqueous solution.

13.
Ultramicroscopy ; 183: 84-88, 2017 12.
Article in English | MEDLINE | ID: mdl-28522241

ABSTRACT

Proper consideration of length-scales is critical for elucidating active sites/phases in heterogeneous catalysis, revealing chemical function of surfaces and identifying fundamental steps of chemical reactions. Using the example of ceria thin films deposited on the Cu(111) surface, we demonstrate the benefits of multi length-scale experimental framework for understanding chemical conversion. Specifically, exploiting the tunable sampling and spatial resolution of photoemission electron microscopy, we reveal crystal defect mediated structures of inhomogeneous copper-ceria mixed phase that grow during preparation of ceria/Cu(111) model systems. The density of the microsized structures is such that they are relevant to the chemistry, but unlikely to be found during investigation at the nanoscale or with atomic level investigations. Our findings highlight the importance of accessing micro-scale when considering chemical pathways over heteroepitaxially grown model systems.

14.
Phys Chem Chem Phys ; 18(25): 16621-8, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27095305

ABSTRACT

Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

15.
Angew Chem Int Ed Engl ; 54(13): 3917-21, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25651288

ABSTRACT

Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

16.
J Phys Chem Lett ; 4(6): 866-71, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-26291348

ABSTRACT

Thin films of reduced ceria supported on metals are often applied as substrates in model studies of the chemical reactivity of ceria based catalysts. Of special interest are the properties of oxygen vacancies in ceria. However, thin films of ceria prepared by established methods become increasingly disordered as the concentration of vacancies increases. Here, we propose an alternative method for preparing ordered reduced ceria films based on the physical vapor deposition and interfacial reaction of Ce with CeO2 films. The method yields bulk-truncated layers of cubic c-Ce2O3. Compared to CeO2 these layers contain 25% of perfectly ordered vacancies in the surface and subsurface allowing well-defined measurements of the properties of ceria in the limit of extreme reduction. Experimentally, c-Ce2O3(111) layers are easily identified by a characteristic 4 × 4 surface reconstruction with respect to CeO2(111). In addition, c-Ce2O3 layers represent an experimental realization of a normally unstable polymorph of Ce2O3. During interfacial reaction, c-Ce2O3 nucleates on the interface between CeO2 buffer and Ce overlayer and is further stabilized most likely by the tetragonal distortion of the ceria layers on Cu. The characteristic kinetics of the metal-oxide interfacial reactions may represent a vehicle for making other metastable oxide structures experimentally available.

SELECTION OF CITATIONS
SEARCH DETAIL
...