Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(24): 16387-16401, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31790218

ABSTRACT

Crystallization from glass can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel compounds and control the optical properties of resulting glass-ceramics. Here, we report on a crystallization study of the ZrF4-TeO2 glass system and show that under specific synthesis conditions, a previously unreported Te0.47Zr0.53OxFy zirconium oxyfluorotellurite antiglass phase can be selectively crystallized at the nanometric scale within the 65TeO2-35ZrF4 amorphous matrix. This leads to highly transparent glass-ceramics in both the visible and near-infrared ranges. Under longer heat treatment, the stable cubic ZrTe3O8 phase crystallizes in addition to the previous unreported antiglass phase. The structure, microstructure, and optical properties of 65TeO2-35ZrF4Tm3+-doped glass-ceramics, were investigated in detail by means of X-ray diffraction, scanning and transmission electron microscopies, and 19F, 91Zr, and 125Te NMR, Raman, and photoluminescence spectroscopies. The crystal chemistry study of several single crystals samples by X-ray diffraction evidence that the novel phase, derived from α-UO3 type, corresponds in terms of long-range ordering inside this basic hexagonal/trigonal disordered phase (antiglass) to a complex series of modulated microphases rather than a stoichiometric compound with various superstructures analogous to those observed in the UO3-U3O8 subsystem. These results highlight the peculiar disorder-order phenomenon occurring in tellurite materials.

2.
Sci Rep ; 8(1): 4640, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29545565

ABSTRACT

We report on the laser emission of the polycrystalline ceramic obtained from the full and congruent crystallization of the parent glass 1Nd3+:75TeO2-12.5Bi2O3-12.5Nb2O5 composition. In particular, the current work underlines the importance of carefully controlling the heat treatment in order to solely crystallize the Bi0.8Nb0.8Te2.4O8 cubic phase and consequently avoid the formation of the BiNbTe2O8 orthorhombic phase that would be detrimental for optical purpose. The structure, microstructure and photoluminescence properties of the resulting transparent tellurite ceramics are characterized. The continuous-wave and gain-switching laser performances reveal that the emission remains perfectly single transversal mode in the range of pump powers explored. The maximum output power achieved was ~28.5 mW, for a pump power threshold of ~67 mW, and with associated efficiency and slope efficiency of ~22.5% and ~50%, respectively. These data definitely stand among the best results obtained so far for bulk laser tellurite materials and thus demonstrate the potential of such polycrystalline transparent ceramics as optically active materials. Finally, the laser emission characteristics in pulsed regime, at low and high repetition rates, are also provided: more than 6.5 W of peak power at a repetition rate of 728 kHz can be obtained.

3.
Acta Crystallogr C ; 69(Pt 5): 460-2, 2013 May.
Article in English | MEDLINE | ID: mdl-23629890

ABSTRACT

A new oxyfluorotellurate(IV), indium fluoridopentaoxidotellurate(IV), InTe2O5F, has been synthesized by solid-state reaction and structurally characterized. The crystal structure consists of a three-dimensional framework formed by InO4F2 octahedra and Te2O5 units. The InO4F2 octahedra are linked through the F atoms, which lie on twofold axes, giving rise to helical chains. These helical chains are connected via the Te2O5 units. The helical chains of indium octahedra surround cavities, into which the lone pairs of electrons of the Te atoms point.

SELECTION OF CITATIONS
SEARCH DETAIL
...