Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32746229

ABSTRACT

An inexpensive, accurate focused ultrasound stereotactic targeting method guided by pretreatment magnetic resonance imaging (MRI) images for murine brain models is presented. An uncertainty of each sub-component of the stereotactic system was analyzed. The entire system was calibrated using clot phantoms. The targeting accuracy of the system was demonstrated with an in vivo mouse glioblastoma (GBM) model. The accuracy was quantified by the absolute distance difference between the prescribed and ablated points visible on the pre treatment and posttreatment MR images, respectively. A precalibration phantom study ( N = 6 ) resulted in an error of 0.32 ± 0.31, 0.72 ± 0.16, and 1.06 ± 0.38 mm in axial, lateral, and elevational axes, respectively. A postcalibration phantom study ( N = 8 ) demonstrated a residual error of 0.09 ± 0.01, 0.15 ± 0.09, and 0.47 ± 0.18 mm in axial, lateral, and elevational axes, respectively. The calibrated system showed significantly reduced ( ) error of 0.20 ± 0.21, 0.34 ± 0.24, and 0.28 ± 0.21 mm in axial, lateral, and elevational axes, respectively, in the in vivo GBM tumor-bearing mice ( N = 10 ).


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Mice , Phantoms, Imaging , Stereotaxic Techniques
2.
J Exp Biol ; 223(Pt 20)2020 10 29.
Article in English | MEDLINE | ID: mdl-32958522

ABSTRACT

Despite its common use as a laboratory model, little is known about the in vivo forces and moments applied to the bovine caudal intervertebral disc. Such aspects are crucial, as intervertebral disc tissue is known to remodel in response to repeated loading. We hypothesized that the magnitude of loading from muscle contraction during a typical lateral bending motion varies between caudal levels and is accompanied by variations in tissue microstructure. This hypothesis was tested by estimating level-wise forces and bending moments using two independent approaches: a dynamic analytical model of the motion and analysis of muscle cross-sections obtained via computed tomography. Microstructure was assessed by measuring the collagen fiber crimp period in the annulus fibrosus, and composition was assessed via quantitative histology. Both the analytical model and muscle cross-sections indicated peak bending moments of over 3 N m and peak compressive force of over 125 N at the c1c2 level, decreasing distally. There was a significant downward trend from proximal to distal in the outer annulus fibrosus collagen crimp period in the anterior and posterior regions only, suggesting remodeling in response to the highest lateral bending moments. There were no observed trends in composition. Our results suggest that although the proximal discs in the bovine tail are subjected to forces and moments from muscle contraction that are comparable (relative to disc size) to those acting on human lumbar discs, the distal discs are not. The resulting pattern of microstructural alterations suggests that level-wise differences should be considered when using bovine discs as a research model.


Subject(s)
Intervertebral Disc , Animals , Biomechanical Phenomena , Cattle , Collagen , Humans , Lumbar Vertebrae , Mechanical Phenomena , Stress, Mechanical , Tomography, X-Ray Computed
3.
J Biomech Eng ; 141(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30673069

ABSTRACT

Predicting the mechanical behavior of the intervertebral disk (IVD) in health and in disease requires accurate spatial mapping of its compressive mechanical properties. Previous studies confirmed that residual strains in the annulus fibrosus (AF) of the IVD, which result from nonuniform extracellular matrix deposition in response to in vivo loads, vary by anatomical regions (anterior, posterior, and lateral) and zones (inner, middle, and outer). We hypothesized that as the AF is composed of a nonlinear, anisotropic, viscoelastic material, the state of residual strain in the transverse plane would influence the apparent values of axial compressive properties. To test this hypothesis, axial creep indentation tests were performed, using a 1.6 mm spherical probe, at nine different anatomical locations on bovine caudal AFs in both the intact (residual strain present) and strain relieved states. The results showed a shift toward increased spatial homogeneity in all measured parameters, particularly instantaneous strain. This shift was not observed in control AFs, which were tested twice in the intact state. Our results confirm that time-dependent axial compressive properties of the AF are sensitive to the state of residual strain in the transverse plane, to a degree that is likely to affect whole disk behavior.

4.
J Mech Behav Biomed Mater ; 68: 232-238, 2017 04.
Article in English | MEDLINE | ID: mdl-28232297

ABSTRACT

The annulus fibrosus (AF) of the intervertebral disc (IVD) serves the dual roles of containing hydrostatic pressure from the inner nucleus pulposus (NP) and allowing flexible connection between adjacent vertebral bodies. Previous work has indicated that in the unloaded state, the AF is under a state of residual circumferential strain that, on average, is comparable to that which is believed to reduce peak stresses in other pressure containing organs. The complex in-vivo loading of the IVD, however, led us to hypothesize that variations with anatomical region should also exist. Residual strains were measured by imaging bovine caudal IVDs at both macro and micro scales in both the intact state (under residual strain) and opened into anterior, posterior, and lateral quadrants (residual strains relieved). Calculation of macro scale residual strains using changes in lamellar arc length and thickness confirmed circumferential tension (anterior: 0.63±2.1%, lateral: 8.3±1.5%, posterior: 4.4±2.1%) and radial compression (anterior: 12.4±5.8%, lateral: 11.120±2.8%, posterior: 4.8±4.2%) around the outer zone of the AF. The inner zone, however, had residual circumferential strains ranging from 28.7±3.4% compression in the anterior region to 3.4±3% tension in the posterior region, with radial strains of 9.7±5.5% tension and 0.2±4.4% compression respectively. This pattern of residual circumferential strain was corroborated at the microscale by comparing the crimp period of collagen fiber bundles in the intact and open states. The results of this study point toward a complex pattern of residual strains in the AF, which develop in response to stresses from both NP pressurization and bending movements.


Subject(s)
Annulus Fibrosus/physiology , Stress, Mechanical , Animals , Cattle , Intervertebral Disc Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...