Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1280848, 2024.
Article in English | MEDLINE | ID: mdl-38384267

ABSTRACT

Phosphorus (P) deficiency is a common problem in croplands where phosphate-based fertilizers are regularly used to maintain bioavailable P for plants. However, due to their limited mobility in the soil, there has been an increased interest in microorganisms that can convert insoluble P into a bioavailable form, and their use to develop phosphate-solubilizing bioinoculants as an alternative to the conventional use of P fertilizers. In this study, we proposed two independent experiments and explored two entirely different habitats to trap phosphate-solubilizing bacteria (PSBs). In the first experiment, PSBs were isolated from the rhizoplane of native plant species grown in a rock-phosphate (RP) mining area. A subset of 24 bacterial isolates from 210 rhizoplane morphotypes was selected for the inorganic phosphate solubilizing activities using tricalcium phosphate (TCP) as the sole P source. In the second experiment, we proposed an innovative experimental setup to select mycohyphospheric bacteria associated to arbuscular mycorrhizal fungal hyphae, indigenous of soils where agronomic plant have been grown and trapped in membrane bag filled with RP. A subset of 25 bacterial isolates from 44 mycohyphospheric morphotypes was tested for P solubilizing activities. These two bacterial subsets were then screened for additional plant growth-promoting (PGP) traits, and 16S rDNA sequencing was performed for their identification. Overall, the two isolation experiments resulted in diverse phylogenetic affiliations of the PSB collection, showing only 4 genera (24%) and 5 species (17%) shared between the two communities, thus underlining the value of the two protocols, including the innovative mycohyphospheric isolate selection method, for selecting a greater biodiversity of cultivable PSB. All the rhizoplane and mycohyphospheric PSB were positive for ammonia production. Indol-3-acetic acid (IAA) production was observed for 13 and 20 isolates, respectively among rhizoplane and mycohyphospheric PSB, ranging, respectively, from 32.52 to 330.27 µg mL-1 and from 41.4 to 963.9 µg mL-1. Only five rhizoplane and 12 mycohyphospheric isolates were positively screened for N2 fixation. Four rhizoplane PSB were identified as siderophore producers, while none of the mycohyphospheric isolates were. The phenotype of one PSB rhizoplane isolate, assigned to Pseudomonas, showed four additive PGP activities. Some bacterial strains belonging to the dominant genera Bacillus and Pseudomonas could be considered potential candidates for further formulation of biofertilizer in order to develop bioinoculant consortia that promote plant P nutrition and growth in RP-enriched soils.

2.
Microorganisms ; 10(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36557659

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are key drivers of soil functioning. They interact with multiple soil parameters, notably, phosphorus (P). In this work, AMF communities of native plants grown spontaneously on former mining sites either enriched (P sites) or not enriched with P (nP sites) by mining cuttings of rock phosphate (RP) were studied. No significant differences were observed in the root mycorrhizal rates of the plants when comparing P and nP sites. The assessment of AMF diversity and community structure using Illumina MiSeq metabarcoding and targeting 18S rDNA in roots and rhizospheric soils showed a total of 318 Amplicon Sequence Variants (ASVs) of Glomeromycota phylum. No significant difference in the diversity was found between P and nP sites. Glomeraceae species were largely dominant, formed a fungal core of 26 ASVs, and were persistent and abundant in all sites. In the P soils, eight ASVs were identified by indicator species analysis. A trend towards an increase in Diversisporaceae and Claroideoglomeraceae and a reduction in Paraglomeraceae and Glomeraceae were noticed. These results provide new insights into AMF ecology in former RP mining sites; they document that P concentration is a driver of AMF community structures in soils enriched in RP long term but also suggest an influence of land disturbance, ecosystem self-restoration, and AMF life history strategies as drivers of AMF community profiles.

3.
Microorganisms ; 10(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35336184

ABSTRACT

In many soils, the bioavailability of Phosphorus (P), an essential macronutrient is a limiting factor for crop production. Among the mechanisms developed to facilitate the absorption of phosphorus, the plant, as a holobiont, can rely on its rhizospheric microbial partners. Therefore, microbial P-solubilizing inoculants are proposed to improve soil P fertility in agriculture. However, a better understanding of the interactions of the soil-plant-microorganism continuum with the phosphorus cycle is needed to propose efficient inoculants. Before proposing further methods of research, we carried out a critical review of the literature in two parts. First, we focused on the diversity of P-chemical forms. After a review of P forms in soils, we describe multiple factors that shape these forms in soil and their turnover. Second, we provide an analysis of P as a driver of microbial community diversity in soil. Even if no rule enabling to explain the changes in the composition of microbial communities according to phosphorus has been shown, this element has been perfectly targeted as linked to the presence/absence and/or abundance of particular bacterial taxa. In conclusion, we point out the need to link soil phosphorus chemistry with soil microbiology in order to understand the variations in the composition of microbial communities as a function of P bioavailability. This knowledge will make it possible to propose advanced microbial-based inoculant engineering for the improvement of bioavailable P for plants in sustainable agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...