Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514654

ABSTRACT

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Subject(s)
Nucleus Accumbens , Receptors, Dopamine D2 , Mice , Male , Animals , Nucleus Accumbens/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Neurons/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Energy Metabolism
3.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Article in English | MEDLINE | ID: mdl-36604603

ABSTRACT

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

5.
Cell Metab ; 31(4): 755-772.e7, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32142670

ABSTRACT

Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain region for the modulation of motivation. Strikingly, transgenically preventing n-3 PUFA deficiency selectively in D2-expressing neurons normalizes MSN collateral inhibition and enhances motivation. These results constitute the first demonstration of a causal link between a behavioral deficit and n-3 PUFA decrease in a discrete neuronal population and suggest that lower n-3 PUFA biostatus in psychopathologies could participate in the etiology of reward-related symptoms.


Subject(s)
Fatty Acids, Omega-3/deficiency , Motivation , Neurons , Nucleus Accumbens , Receptors, Dopamine D2/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology
6.
Anal Chem ; 91(24): 15967-15973, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31751120

ABSTRACT

The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.


Subject(s)
Brain/metabolism , Lipids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cell Line , Diet/veterinary , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microarray Analysis , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley
7.
J Neurosci ; 39(30): 5935-5948, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31160539

ABSTRACT

Epidemiological studies indicate that insulin resistance (IR), a hallmark of type 2 diabetes, is associated with an increased risk of major depression. Here, we demonstrated that male mice fed a high-fat diet (HFD) exhibited peripheral metabolic impairments reminiscent of IR accompanied by elevated circulating levels of branched-chain amino acids (BCAAs), whereas both parameters were normalized by chronic treatment with metformin (Met). Given the role of BCAAs in the regulation of tryptophan influx into the brain, we then explored the activity of the serotonin (5-HT) system. Our results indicated that HFD-fed mice displayed impairment in the electrical activity of dorsal raphe 5-HT neurons, attenuated hippocampal extracellular 5-HT concentrations and anxiety, one of the most visible and early symptoms of depression. On the contrary, Met stimulated 5-HT neurons excitability and 5-HT neurotransmission while hindering HFD-induced anxiety. Met also promoted antidepressant-like activities as observed with fluoxetine. In light of these data, we designed a modified HFD in which BCAA dietary supply was reduced by half. Deficiency in BCAAs failed to reverse HFD-induced metabolic impairments while producing antidepressant-like activity and enhancing the behavioral response to fluoxetine. Our results suggest that Met may act by decreasing circulating BCAAs levels to favor serotonergic neurotransmission in the hippocampus and promote antidepressant-like effects in mice fed an HFD. These findings also lead us to envision that a diet poor in BCAAs, provided either alone or as add-on therapy to conventional antidepressant drugs, could help to relieve depressive symptoms in patients with metabolic comorbidities.SIGNIFICANCE STATEMENT Insulin resistance in humans is associated with increased risk of anxiodepressive disorders. Such a relationship has been also found in rodents fed a high-fat diet (HFD). To determine whether insulin-sensitizing strategies induce anxiolytic- and/or antidepressant-like activities and to investigate the underlying mechanisms, we tested the effects of metformin, an oral antidiabetic drug, in mice fed an HFD. Metformin reduced levels of circulating branched-chain amino acids, which regulate tryptophan uptake within the brain. Moreover, metformin increased hippocampal serotonergic neurotransmission while promoting anxiolytic- and antidepressant-like effects. Moreover, a diet poor in these amino acids produced similar beneficial behavioral property. Collectively, these results suggest that metformin could be used as add-on therapy to a conventional antidepressant for the comorbidity between metabolic and mental disorders.


Subject(s)
Amino Acids, Branched-Chain/blood , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Insulin Resistance/physiology , Metformin/therapeutic use , Amino Acids, Branched-Chain/antagonists & inhibitors , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Anxiety/blood , Anxiety/drug therapy , Anxiety/psychology , Depression/blood , Depression/drug therapy , Depression/psychology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL
8.
Obesity (Silver Spring) ; 27(2): 255-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30597761

ABSTRACT

OBJECTIVE: A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS: Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS: Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS: These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.


Subject(s)
Conditioning, Operant/physiology , Diet, High-Fat/methods , Animals , Male , Mice
9.
Semin Nucl Med ; 47(1): 64-74, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27987559

ABSTRACT

Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use.


Subject(s)
Behavior, Addictive/metabolism , Behavior, Addictive/pathology , Dopamine/metabolism , Animals , Behavior, Addictive/diagnostic imaging , Humans , Positron-Emission Tomography , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...