Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Mikrobiologiia ; 86(1): 39-46, 2017.
Article in Chinese | MEDLINE | ID: mdl-30207141

ABSTRACT

The effect of ultramicrobacterial epibionts of the genera Kaistia (strain NF1), Chryseobacterium (strain NF4), and Stenotrophomonas (strain FM3) on the process of sporulation of Bacillus subtilis ATCC 6633 was studied. The investigated strains of ultramicrobacteria (UMB) were found to inhibit the sporulation process of B. subtilis ATCC 6633 in binary mixed cultures, exhibiting a 3-day delay of the onset of sporulation compared to the control one, an extended period of the prospore maturation, formation of the fraction of immature spores, and development of ultrastructural defects in many endospores. Thus, investigation of binary mixed cultures of B. subtilis and UMB revealed that, apart from suppression of reproduction and lysis of host vegetative cells, inhibition of spore formation and destruction of endospores was yet another feature of intermicrobial parasitism. The UMB parasites of the studied genera are assumed to participate in the regulation of development and reproduction of B. subtilis in natural habitats of this spore-forming bacterium.


Subject(s)
Bacillus subtilis/physiology , Chryseobacterium/growth & development , Spores, Bacterial/physiology , Stenotrophomonas/growth & development
2.
Prikl Biokhim Mikrobiol ; 51(2): 151-60, 2015.
Article in Russian | MEDLINE | ID: mdl-26027350

ABSTRACT

We isolated 50 strains of free-living ultrasmall bacteria with a cell volume that varies from 0.02 to 1.3 microm3 from a range of extremal natural biotopes, namely permafrost soils, oil slime, soils, lake silt, thermal swamp moss, and the skin integuments of the clawed frog, Xenopus laevis. Of them, 15 isolates, characterized by a cell size of less than 0.1 microm3 and a genome size from 1.5 to 2.4 Mb, were subsumed to ultramicrobacteria belonging to different philogenetic groups (Alphaproteobacteria, Bacteroidetes, Actinobacteria) and genera (Kaistia, Chryseobacterium, Microbacterium, Leucobacter, Leifsonia, and Agrococcus) of the Bacteria domain. They are free-living mesophilic heterotrophic aerobic bacteria. The representatives of Kaistia and Chryseobacterium genera were capable of facultative parasitism on other species of chemo-organotrophic bacteria and cyanobacteria. The ultramicrobacteria differed in their morpholgy, cell ultrastructural organization, and physiological and biochemical features. According to the fine structure of their cell walls, the isolates were subdivided into two groups, namely Gram-positive and Gram-negative forms.


Subject(s)
Bacteria/isolation & purification , Bacterial Physiological Phenomena , Soil Microbiology , Animals , Bacteria/genetics , Cell Wall/ultrastructure , Chryseobacterium/isolation & purification , Chryseobacterium/physiology , Genome Size , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Russia , Wetlands , Xenopus laevis/microbiology
3.
Mikrobiologiia ; 84(5): 536-45, 2015.
Article in Russian | MEDLINE | ID: mdl-27169242

ABSTRACT

Forespore formation in the anaerobic bacterium Anaerobacterpolyendosporus PS-1(T) was studied by phase contrast, fluorescence, and electron microscopy. It is concluded that in this bacterium the formation of all forespores in multispore sporangia occurs via the same mechanism as that operating in all known bacilli and clostridia during the single-spore variant of endogenous sporogenesis. Its cytological indicators are as follows: (1) formation of the forespore septum, (2) engulfment of the smaller prespore cell by the larger mother cell, (3) cortex synthesis, (4) assembly of the spore coats, (5) exosporium formation, and (6) lysis of the mother cell. Polysporogenesis in strain PS-1(T) is characterized by synchronous formation of all spores (siblings) in a given sporangium and by the absence of any indication of forespore division within the mother cell. These data suggest that multiple spores within a single PS-1(T) cell result not from division of the first forespores developing at one or two cell poles, as it was reported for another polysporogenic bacterium, "Metabacterium polyspora", but rather from simultaneous independent formation of several prespores in a single mother cell in the course of modified cell division.


Subject(s)
Clostridium/physiology , Sporangia/physiology , Spores, Bacterial/physiology , Anaerobiosis/physiology , Cell Division/physiology , Clostridium/ultrastructure , Microscopy, Electron , Sporangia/ultrastructure , Spores, Bacterial/ultrastructure
4.
Mikrobiologiia ; 83(5): 575-82, 2014.
Article in Russian | MEDLINE | ID: mdl-25844469

ABSTRACT

The number of spores formed in a single cell ofAnaerobacterpolyendosporus PS-1T is significantly influenced by the composition of nutrient media. Depending on carbohydrate concentration in synthetic medium, the number of spores may vary from one-two to five-seven. Investigation of spore formation by fluorescence and electron microscopy revealed that on media with 0.5-1.0% glucose or galactose most of the vegetative cells remained rod-shaped after cessation of cell division in the culture. Their nucleoids were localized at cell poles close to the polar site of the cytoplasmic membrane. Forespores were formed at one or both of these poles. A satellite nucleoid (operator) was detected close to each forespore. In the variant with bipolar organization of mother cells only one or two spores per cell were formed. In the second variant of cultivation, when the cells grew at low galactose concentrations (0.1-0.3%), most of the vegetative cells increased in volume and became oval or spherical after cessation of cell division in the culture. Epifluorescence microscopy with nucleic acids-specific fluorochromes (DAPI and acridine orange) revealed the presence of multiple (six to nine) nucleoids in these cells. The nucleoids were located at the cell periphery in close contact with the cytoplasmic membrane. These nucleoids became the centers (poles) for forespore formation. Thus, in the early stationary phase transversion from bipolar to multipolar cells occurred during the early stationary phase. Cessation of cell division combined with continuing replication of the nucleoids resulted in formation on multinuclear cells. The multiplicity of nucleoides and multipolarity of these cells were prerequisites determining endogenous polysporogenesis, occurring as synchronous formation of three to seven twin spores in a number of the oval and spherical cells.


Subject(s)
Cell Division/physiology , Cell Membrane/metabolism , Galactose/pharmacology , Gram-Positive Endospore-Forming Rods/physiology , Cell Membrane/ultrastructure , Galactose/metabolism , Gram-Positive Endospore-Forming Rods/ultrastructure , Spores, Bacterial/growth & development
8.
Mikrobiologiia ; 78(1): 42-51, 2009.
Article in Russian | MEDLINE | ID: mdl-19334596

ABSTRACT

Differences in generation of dormant forms (DF) were revealed between two strains of non-sporeforming gram-negative bacteria Azospirillum brasilense, Sp7 (non-endophytic) and Sp245 (endophytic strain). In post-stationary ageing bacterial cultures grown in a synthetic medium with a fivefold decreased initial nitrogen content, strain Sp7 formed two types of cyst-like resting cells (CRC). Strain Sp245 did not form such types of DF under the same conditions. CRC of the first type were formed in strain Sp245 only under phosphorus deficiency (C > P). The endophytic strain was also shown to form structurally differentiated cells under complete starvation, i.e. at a transfer of early stationary cultures, grown in the media with C > N unbalance, to saline solution (pH 7.2). These DF had a complex structure similar to that of azotobacter cysts. The CRC, which are generated by both azospirilla strains and belong to distinct morphological types, possessed the following major features: absence of division; specific ultrastructural organization; long-term maintenance of viability (for 4 months and more); higher heat resistance (50-60 degrees C, 10 min) as compared with vegetative cells, i.e. the important criteria for dormant prokaryotic forms. However, CRC of non-endophytic strain Sp7 had higher heat resistance (50, 55, 60 degrees C). The viability maintenance and the portion of heat-resistant cells depended on the conditions of maturation and storage of CRC populations. Long-term storage (for 4 months and more) of azospirilla DF populations at -20 degrees C was optimal for maintenance of their colony-forming ability (57% of the CFU number in stationary cultures), whereas the largest percentage of heat-resistant cells was in CRC suspensions incubated in a spent culture medium (but not in saline solution) at room temperature. The data on the intraspecies diversity of azospirilla DF demonstrate the relation between certain type DF formation to the type of interaction (non-endophytic or endophytic) with the plant partner and provide more insight into the adaptation mechanisms that ensure the survival of gram-negative non-spore-forming bacteria in nature.


Subject(s)
Azospirillum brasilense/growth & development , Azospirillum brasilense/ultrastructure , Azospirillum brasilense/drug effects , Culture Media/metabolism , Culture Media/pharmacology , Nitrogen/metabolism , Phosphorus/metabolism
10.
Mikrobiologiia ; 77(4): 512-23, 2008.
Article in Russian | MEDLINE | ID: mdl-18825979

ABSTRACT

Cystlike resting cells (CRC) of non-spore-forming gram-negative bacteria of the genus Pseudomonas, P. aurantiaca and P. fluorescens, were obtained and characterized for the first time; their physiological and morphological diversity was demonstrated. The following properties were common for all the revealed types of CRC as dormant forms: (1) long-term (up to 6 months or longer) maintenance of viability in the absence of culture growth and cell respiration; (2) absence of an experimentally detectable level of metabolism; (3) higher resistance to damage and autolysis under the action of provoking factors than in metabolically active vegetative cells; and (4) specific features of ultrastructural organization absent in vegetative cells: thickened and lamellar envelopes, clumpy structure of the cytoplasm, and condensed DNA in nucleoid. The differences in various types of CRC concern the thickness and lamellar structure of cell envelopes, as well as the presence and thickness of the capsular layer. In particular, forms ultrastructurally similar to typical bacterial cysts were revealed in pseudomonad populations growing on soil agar. Physiological diversity was revealed in different levels of viability preservation and thermal resistance in various types of CRC and depended on the conditions of their formation. The optimal conditions and procedures for obtaining P. aurantiaca and P. fluorescens CRC that retain the ability to form colonies on standard nutrient media are as follows: (1) a twofold decrease of nitrogen content in the growth medium; (2) an increased level of anabiosis autoinducer (C12-AHB, 10(-4) M) in stationary cultures; (3) transfer of the cells from stationary cultures to a starvation medium with silica; (4) cultivation in soil extract; and (5) development of cultures on soil agar. The CRC from the cultures grown in soil extract or starvation medium with silica proved to be resistant to heat treatment (60 degrees C, 5 min). In the CRC formed in nitrogen-limited media, the degree of heat resistance increased at longer incubation (1.5 to 6 months). CRCs on soil agar surface were resistant to desiccation. The ultrastructure of the morphologically varied types of P. aurantiaca CRC formed under simulated natural conditions is described for the first time. The data on the intraspecies diversity of pseudomonad dormant forms contribute to the concept of plasticity of the life style and adaptive reactions that ensure survival of these bacteria in unfavorable environmental conditions.


Subject(s)
Pseudomonas fluorescens/growth & development , Pseudomonas fluorescens/ultrastructure , Pseudomonas/growth & development , Pseudomonas/ultrastructure , Cell Culture Techniques/methods , Cell Cycle , Environment , Pseudomonas/isolation & purification , Pseudomonas fluorescens/isolation & purification
11.
Mikrobiologiia ; 77(1): 46-54, 2008.
Article in Russian | MEDLINE | ID: mdl-18365721

ABSTRACT

The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1-3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29-43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of < or =0.3 microm and volume of < or =0.014 microm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18-0.20 x 0.20-0.30 microm in size, forming spherical aggregates (microcolonies) of dividing cells in situ. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.


Subject(s)
Bacteria/isolation & purification , Microscopy, Electron, Transmission , Soil Microbiology , Bacteria/classification , Biofilms , Colony Count, Microbial , Ice , Petroleum , Siberia , Soil Pollutants
12.
Mikrobiologiia ; 77(1): 55-62, 2008.
Article in Russian | MEDLINE | ID: mdl-18365722

ABSTRACT

Transmission electron and fluorescence microscopy was used to study the character of the interaction of free-living ultramicrobacterial (UMB) strains NF1 and NF3, affiliated with the genus Kaistia, and seven species of gram-positive and gram-negative heterotrophic bacteria. Strains NF1 and NF3 were found to exhibit parasitic activity against gram-positive Bacillus subtilis and gram-negative Acidovorax delafildii. UMB cells are tightly attached to the envelopes of the victim cells and induce their lysis, thus demonstrating the features of typical ectoparasitism. The selectivity of parasitism of the studied UMB to the victim bacteria has been shown: only two soil microorganisms of the seven test objects, B. subtilis ATCC 6633 and an aerobic gram-negative bacterium A. delafildii 39, were found to be sensitive to UMB attack. Other bacteria (Micrococcus luteus VKM Ac-2230, Staphylococcus aureus 209-P, Pseudomonas putida BS394, Escherichia coli C 600, and Pantoea agglomerans ATCC 27155) were not attacked by UMB. It was established for the first time that free-living UMB may be facultative parasites not only of phototrophic bacteria, as we have previously demonstrated, but of heterotrophic bacteria as well. The UMB under study seem to play an important role in the regulation of the quantity of microorganisms and in the functioning of microbial communities in some natural ecotopes.


Subject(s)
Alphaproteobacteria/physiology , Soil Microbiology , Alphaproteobacteria/ultrastructure , Bacillus subtilis/physiology , Bacillus subtilis/ultrastructure , Bacteriolysis , Comamonadaceae/physiology , Comamonadaceae/ultrastructure , Microscopy, Electron , Microscopy, Fluorescence
14.
Mikrobiologiia ; 77(6): 738-48, 2008.
Article in Russian | MEDLINE | ID: mdl-19137712

ABSTRACT

The phenotypic characteristics of the species Sulfobacillus thermotolerans Kr1(T), as dependent on the cultivation conditions, are described in detail. High growth rates (0.22-0.30 h(-1)) and high oxidative activity were recorded under optimum mixotrophic conditions at 40 degrees C on medium with inorganic (Fe(II), S(0), or pyrite-arsenopyrite concentrate) and organic (glucose and/or yeast extract) substrates. In cells grown under optimum conditions on medium with iron, hemes a, b, and, most probably, c were present, indicating the presence of the corresponding cytochromes. Peculiar extended structures in the form of cylindrical cords, never observed previously, were revealed; a mucous matrix, likely of polysaccharide nature, occurred around the cells. In the cells of sulfobacilli grown litho-, organo-, and mixotrophically at 40 degrees C, the enzymes of the three main pathways of carbon utilization and some enzymes of the TCA cycle were revealed. The enzyme activity was maximum under mixotrophic growth conditions. The growth rate in the regions of limiting temperatures (55 degrees C and 12-14 degrees C) decreased two- and tenfold, respectively; no activity of 6-phosphogluconate dehydrogenase, one of the key enzymes of the oxidative pentose phosphate pathway, could be revealed; and a decrease in the activity of almost all enzymes of glucose metabolism and of the TCA cycle was observed. The rate of 14CO2 fixation by cells under auto-, mixo-, and heterotrophic conditions constituted 31.8, 23.3, and 10.3 nmol/(h mg protein), respectively. The activities of RuBP carboxylase (it peaked during lithotrophic growth) and of carboxylases of heterotrophic carbon dioxide fixation were recorded. The physiological and biochemical peculiarities of the thermotolerant sulfobacillus are compared versus moderately thermophilic sulfobacilli.


Subject(s)
Gram-Positive Endospore-Forming Bacteria/physiology , Gram-Positive Endospore-Forming Bacteria/ultrastructure , Carbon/metabolism , Carbon Dioxide/metabolism , Culture Media , Gram-Positive Endospore-Forming Bacteria/chemistry , Heme/analysis , Oxidation-Reduction , Spectrophotometry , Temperature
15.
Mikrobiologiia ; 76(5): 652-61, 2007.
Article in Russian | MEDLINE | ID: mdl-18069326

ABSTRACT

Gram-negative chemoorganotrophic soil ultramicrobacteria (UMB), strains NF1 and NF3, have been isolated. In their development cycle, the strains formed small coccoid cells of 400-800 nm and ultrasmall cells of 200-300 nm. Phylogenetically, the strains NF1 and NF3 belong to Alphaproteobacteria and are close to the type strain of the recently described species Kaistia adipata. The ultrastructure of UMB cells has been studied using ultrathin sections and freeze-fracturing. It has been shown that the structure of UMB cell walls is of the gram-negative type; the outer membrane and peptidoglycan layer are well differentiated. The cell surface has numerous protrusions (prosthecae) of conical or spherical shape filled with the contents of the periplasm. The formation of unusual cellular structures (not occurring in known free-living bacteria) is a feature of UMB: these include the following: (a) piles of rod-like subunits, ca. 30 A in diameter and 150-250 angstroms in length: (b) long bunches (up to 300-400 angstroms) comprised of filamentous subunits; and (c) large electron-dense spherical bodies (up to 200-300 angstroms in diameter) localized in the periplasm. A distinctive feature of UMB is their ability to grow as facultative parasites on living cyanobacterial (CB) cells. In this case, three types of interaction between UMB and CB have been revealed: (1) adsorption of UMB cells on the surface of CB cells; (2) penetration of UMB into polysaccharide sheathes; and (3) penetration of UMB into CB eytoplasm. UMB cells have been shown to reproduce by budding, with buds (up to 2-3) located directly on the mother cell, without formation of intennediate hyphae.


Subject(s)
Alphaproteobacteria/ultrastructure , Alphaproteobacteria/growth & development , Alphaproteobacteria/isolation & purification , Cell Wall/ultrastructure , Cyanobacteria/physiology , Geologic Sediments/microbiology , Microscopy, Electron, Transmission , Petroleum/microbiology , Russia
16.
Mikrobiologiia ; 76(2): 191-9, 2007.
Article in Russian | MEDLINE | ID: mdl-17583215

ABSTRACT

The changes in the state of Bacillus subtilis spores that occur during germination were analyzed using dynamic phase microscopy (DPM). DPM is based on monitoring and analyzing the interference image of a specimen in a coherent laser beam. The optical path difference (the phase thickness of the specimen, PT) depends on the geometrical height of the specimen and its refractive index. We demonstrated that the maximum PT value is a convenient criterion of the physiological state of the organism involved: PT is > or = 80 nm, 40-50 nm, and < or = 0 in dormant, developing (initiated), and heat-killed spores, respectively. We established that (i) heating a spore suspension to 40 degrees C results in a reversible twofold decrease (from 80 to 40 nm) in their PT under conditions that do not promote the development of the bacteria; this decrease is irreversible under growth-promoting conditions; (ii) the PT values of germinating spores oscillate with a considerable fluctuation amplitude (up to 7 nm), in contrast to the limited fluctuation amplitude (within 1 nm) in dormant spores; (iii) activated spores were heterogenous with respect to the PT pattern: a majority of the spores exhibited a usual spatial profile (with a maximum thickness in the center), whereas a minor fraction of them were characterized by an erythrocyte-like profile with a concave center; this implies that the central zone of the spore was more rapidly hydrated (with a decrease in refractive index) than the peripheral zone.


Subject(s)
Bacillus subtilis/physiology , Spores, Bacterial/ultrastructure , Microscopy, Phase-Contrast , Spores, Bacterial/growth & development
17.
Mikrobiologiia ; 76(1): 72-82, 2007.
Article in Russian | MEDLINE | ID: mdl-17410877

ABSTRACT

The procedure of obtaining DNA-containing cell envelopes ("micromummies") of bacteria, yeasts, and fungi using chaotropic salts has been developed previously and the possibility of their direct application in PCR has been demonstrated. The fine structure of micromummies has been studied by electron microscopic methods. This work has demonstrated that additional treatment of micromummies of yeasts and gram-positive bacteria with proteinase K results in hydrolytic degradation of cell proteins and drastic enhancement of cell wall permeability for macromolecules (DNA). Thus, the efficiency of PCR ex situ using resultant micromummies after washing off the products of protein hydrolysis and proteinase K can be increased. The results of electron microscopic study of ultrathin sections of yeasts (Pichia pastoris, Saccharomyces cerevisiae) and gram-positive bacteria (Micrococcus luteus, Arthrobacter globiformis, Bacillus subtilis) support the biochemical data that treatment with chaotropic salts and proteinase K results in the loosening of microbial cell walls and in a decrease in the intracellular protein content. At the same time, cell walls generally maintain their integrity (continuity) and initial spherical or rodlike shape. The optimal modes of treatment of the cells of different microbial species with chaotropic salts and proteinase K have been selected to obtain permeabilized cell envelopes containing denatured or native DNA.


Subject(s)
Cell Wall/metabolism , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , Polymerase Chain Reaction/methods , Cell Wall/drug effects , Cell Wall/ultrastructure , Endopeptidase K/pharmacology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Perchlorates/pharmacology , Permeability , Sodium Compounds/pharmacology , Yeasts/drug effects , Yeasts/genetics
18.
Mikrobiologiia ; 75(4): 446-56, 2006.
Article in Russian | MEDLINE | ID: mdl-17025168

ABSTRACT

Information about the functions of extracellular autoregulators, which adapt microorganisms to the stresses "scheduled" in the development cycle of microbial cultures (stresses of new medium, starvation, or space exhaustion (high cell density)) is summarized in the review. In a number of bacteria and yeasts, derivatives of alkylhydroxybenzenes (AHB), particularly of the class of alkyl resorcinols, act as autoregulators with adaptogenic functions. The chemical structure of AHB determines their amphiphility; capacity for physical and chemical interaction with membrane lipids, proteins, and DNA; properties as natural modifiers of biological membranes and enzymes; and the expression of antioxidant activity. Increase of AHB concentration up to the critical level (10(-5)-10(-4) M) results in cessation of cell division and in transition of the microbial culture to the stationary phase; further increase to 10(-4)-10(-3) M induces a transition of some of the cells of a post-stationary culture to the anabiotic state with the formation of cystlike resting cells (CRC), even in non-spore-forming bacteria. AHB participate in the regulation of the phenotypic variability of bacteria. The dynamics of extra- and intracellular concentrations of AHB in growing microbial cultures and the polymodality of their effect determine the adaptogenic functions of AHB as autoinhibitors of culture growth, autoinducers of anabiosis, and autoinhibitors of germination of resting forms. Manifestation of any given function depends on the concentration of AHB, the physiological state of the recipient cells, and on environmental factors. The species nonspecificity of AHB effects points to their significant role in the regulation of the development and functioning of microbial communities.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Phenols/metabolism , Yeasts/physiology , Adaptation, Physiological , Bacteria/cytology , Bacterial Proteins/metabolism , Cell Division/physiology , DNA, Bacterial/metabolism , DNA, Fungal/metabolism , Fungal Proteins/metabolism , Homeostasis , Lipid Metabolism , Yeasts/metabolism
19.
Mikrobiologiia ; 74(4): 505-10, 2005.
Article in Russian | MEDLINE | ID: mdl-16211854

ABSTRACT

The yeasts Saccharomyces cerevisiae and Pichia pastoris and the bacteria Micrococcus luteus, Bacillus subtilis, and Anaerobacter polyendosporus have been treated with the chaotropic agents guanidine hydrochloride and guanidine thiocyanate and certain detergents and studied using fluorescence microscopy. Studies with the use of fluorochromes that can selectively stain nucleic acids (diamidino-2-phenylindole (DAPI), propidium iodide, and acridine orange) show that treatment of the bacterial and yeast cells at 37 degrees C for 3-5 h induces a release of DNA from the cytoplasm and its accumulation in the cellular zone, known as ectoplasm, located between the cell wall and the remainder of the cytoplasm (called endoplasm) in the form of one or several large granules. After treating the cells with the chaotropic agents at 100 degrees C for 5-6 min, the DNA is diffusively distributed over the ectoplasm. The fluorochromes used do not allow the detection of RNA. These findings are in agreement with previous data obtained from electron microscopic study of thin cell sections. After 33 PCR cycles, a considerable portion of DNA leaves the cells; as a result, they show a low level of diffusive fluorescence when stained with DAPI. When endospores of B. subtilis are treated with the chaotropic agents, they become highly permeable to the fluorochromes. Fluorescence microscopic study of such endospores shows that they contain DNA in the central part of their cores.


Subject(s)
Disinfectants , Gram-Positive Bacteria/ultrastructure , Microscopy, Fluorescence/methods , Yeasts/ultrastructure , DNA, Bacterial/analysis , DNA, Fungal/analysis , Guanidine , Guanidines , Thiocyanates
20.
Mikrobiologiia ; 74(2): 157-65, 2005.
Article in Russian | MEDLINE | ID: mdl-15938390

ABSTRACT

We revealed a relationship between alkylhydroxybenzene (AHB)-induced changes in the structural organization of supramolecular complexes (SC) of the DNA of Pseudomonas auraniaca and the phenotypic dissociation of this bacterium. The addition of 0.1-0.3 mM hexylresorcinol (C6-AHB), a chemical analogue of microbial anabiosis autoinducers, caused the formation of cystlike refractile cells (CRC) in these gram-negative, nonsporulating bacteria. Inoculating pseudomonad CRC on solid nutrient media resulted in phenotypic dissociation of the microbial population that yielded several variants with different colony structure and morphology. This manifested itself in the conversion of the original S-colony-forming phenotype into the R form and in the formation of less pigmented colonies. These transitions were possibly linked to AHB-induced structural changes in the DNA. In vitro studies revealed that AHB could interact with DNA SC, resulting in their structural modification that manifested itself in changes in their elastoviscosity. DNA supramolecular complexes isolated from proliferating, stationary-phase, and anabiotic P. aurantiaca cells differed in their elastoviscosity and capacity to interact with AHB homologues with different hydrophobicity, such as hexylresorcinol and methylresorcinol (C1-AHB). The DNA SC from actively proliferating cells were characterized by smaller elastoviscosity compared with those from stationary-phase and anabiotic cells, due to the difference in the DNA superspiralization degree and the physiological age of the bacteria involved. C6-AHB produced a pronounced relaxing effect on the DNA SC from exponential-phase P. aurantiaca cells. The less hydrophobic C1-AHB produced a similar effect on the DNA SC from stationary-phase cells. The curve of the dose-effect dependence of C6-AHB had a breaking point within the submillimolar (10(-4) M) concentration range. These concentrations induce the formation of cystlike anabiotic pseudomonad cells that are characterized by an unstable genotype and dissociate into distinct variants upon inoculation on solid media.


Subject(s)
DNA, Bacterial/metabolism , Phenol/pharmacology , Pseudomonas/drug effects , Hexylresorcinol/pharmacology , Phenotype , Pigments, Biological , Pseudomonas/cytology , Pseudomonas/genetics , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...