Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Physiol Funct Imaging ; 34(4): 317-21, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24188499

ABSTRACT

BACKGROUND: Resistance training in combination with practical blood flow restriction (pBFR) is thought to stimulate muscle hypertrophy by increasing muscle activation and muscle swelling. Most previous studies used the KAATSU device; however, little long-term research has been completed using pBFR. OBJECTIVE: To investigate the effects of pBFR on muscle hypertrophy. METHODS: Twenty college-aged male participants with a minimum of 1 year of resistance training experience were recruited for this study. Our study consisted of a randomized, crossover protocol consisting of individuals either using pBFR for the elbow flexors during the first 4 weeks (BFR-HI) or the second 4 weeks (HI-BFR) of an 8-week resistance training programme. Direct ultrasound-determined bicep muscle thickness was assessed collectively at baseline and at the end of weeks 4 and 8. RESULTS: There were no differences in muscle thickness between groups at baseline (P = 0·52). There were time (P<0·01, ES = 0·99) but no condition by time effects (P = 0·58, ES = 0·80) for muscle thickness in which the combined values of both groups increased on average from week 0 (3·66 ± 0·06) to week 4 (3·95 ± 0·05) to week 8 (4·11 ± 0·07). However, both the BFR-HI and HI-BFR increased significantly from baseline to week 4 (6·9% and 8·6%, P<0·01) and from weeks 4 to 8 (4·1%, 4·0%, P<0·01), respectively. CONCLUSION: The results of this study suggest that pBFR can stimulate muscle hypertrophy to the same degree to that of high-intensity resistance training.


Subject(s)
Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Resistance Training , Adaptation, Physiological , Constriction , Cross-Over Studies , Humans , Hypertrophy , Male , Muscle Contraction , Muscle Strength , Muscle, Skeletal/diagnostic imaging , Regional Blood Flow , Ultrasonography , Young Adult
2.
J Int Soc Sports Nutr ; 10(1): 44, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24107586

ABSTRACT

BACKGROUND: Xpand® 2X is a proprietary blend comprised of branched chain amino acids, creatine monohydrate, beta-alanine (CarnoSyn®), quercetin, coenzymated B-vitamins, alanyl-glutamine (Sustamine®), and natural nitrate sources from pomegranate and beet root extracts purported to enhance the neuromuscular adaptations of resistance training. However to date, no long-term studies have been conducted with this supplement. The purpose of this study was to investigate the effects of a multi-ingredient performance supplement (MIPS) on skeletal muscle hypertrophy, lean body mass and lower body strength in resistance-trained males. METHODS: Twenty resistance-trained males (21.3 ± 1.9 years) were randomly assigned to consume a MIPS or a placebo of equal weight and volume (food-grade orange flavors and sweeteners) in a double-blind manner, 30 minutes prior to exercise. All subjects participated in an 8-week, 3-day per week, periodized, resistance-training program that was split-focused on multi-joint movements such as leg press, bench press, and bent-over rows. Ultrasonography measured muscle thickness of the quadriceps, dual-energy X-ray absorptiometry (DEXA) determined lean body mass, and strength of the bench press and leg press were determined at weeks 0, 4, and 8 of the study. Data were analyzed with a 2 × 3 repeated measures ANOVA with LSD post hoc tests utilized to locate differences. RESULTS: There was a significant group-by-time interaction in which the MIPS supplementation resulted in a significant (p < 0.01) increase in strength of the bench press (18.4% vs. 9.6%) compared with placebo after 4 and 8 weeks of training. There were no significant group by time interactions between MIPS supplementation nor the placebo in leg press strength (p = .08). MIPS supplementation also resulted in a significant increase in lean body mass (7.8% vs. 3.6%) and quadriceps muscle thickness (11.8% vs. 4.5%) compared with placebo (group*time, p <0.01). CONCLUSIONS: These results suggest that this MIPS can positively augment adaptations in strength, and skeletal muscle hypertrophy in resistance-trained men.

3.
Nutr J ; 12: 86, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23782948

ABSTRACT

Consumption of moderate amounts of animal-derived protein has been shown to differently influence skeletal muscle hypertrophy during resistance training when compared with nitrogenous and isoenergetic amounts of plant-based protein administered in small to moderate doses. Therefore, the purpose of the study was to determine if the post-exercise consumption of rice protein isolate could increase recovery and elicit adequate changes in body composition compared to equally dosed whey protein isolate if given in large, isocaloric doses.


Subject(s)
Body Composition , Dietary Supplements , Milk Proteins/administration & dosage , Oryza/chemistry , Plant Proteins/administration & dosage , Resistance Training , Dietary Proteins/administration & dosage , Double-Blind Method , Humans , Male , Muscle, Skeletal/metabolism , Whey Proteins , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...