Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 9(1): coab060, 2021.
Article in English | MEDLINE | ID: mdl-34386238

ABSTRACT

Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times more likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles.

2.
J Wildl Dis ; 54(4): 755-764, 2018 10.
Article in English | MEDLINE | ID: mdl-29863970

ABSTRACT

Avian trichomonosis, caused by the protozoan Trichomonas gallinae, affects bird-eating raptors worldwide. Raptors can develop trichomonosis by feeding on infected prey, particularly Rock Pigeons (C olumba livia), which are a reservoir for T. gallinae. Raptors may be particularly vulnerable to T. gallinae infection in degraded habitats, where changes in resources may cause raptors to switch from foraging on native prey to synanthropic avian species such as Rock Pigeons. Golden Eagles ( Aquila chrysaetos) typically forage on mammals; however, habitat across much of their range is experiencing degradation through changes in land use, climate, and human encroachment. In 2015, we examined the prevalence of T. gallinae infection in Golden Eagle nestlings across western North America and conducted an intensive study on factors associated with T. gallinae infection and trichomonosis in southwestern Idaho. We found T. gallinae infection in 13% (12/96) of eagle nestlings across 10 western states and in 41% (13/32) of nestlings in southwestern Idaho. At the Idaho site, the probability of T. gallinae infection increased as the proportion of Rock Pigeons in nestling diet increased. Nestlings with diets that consisted of ≥10% Rock Pigeons had a very high probability of T. gallinae infection. We compared historical (1971-81) and recent (2014-15) diet data and incidence of trichomonosis lesions of nestling eagles in Idaho and found that the proportion of Rock Pigeons in eagle diets was higher in recent versus historical periods, as was the proportion of eagle nestlings with trichomonosis lesions. Our results suggested that localized shifts in eagle diet that result from habitat degradation and loss of historical prey resources have the potential to affect Golden Eagle nestling survival and supported the hypothesis that land use change can alter biologic communities in a way that might have consequences for disease infection and host susceptibility.


Subject(s)
Bird Diseases/parasitology , Eagles , Trichomonas Infections/veterinary , Trichomonas/isolation & purification , Animals , Bird Diseases/epidemiology , Columbidae , Feeding Behavior , Idaho/epidemiology , Prevalence , Risk Factors , Trichomonas Infections/epidemiology , Trichomonas Infections/parasitology
3.
J Exp Zool A Ecol Integr Physiol ; 327(5): 243-253, 2017 06.
Article in English | MEDLINE | ID: mdl-29356454

ABSTRACT

An individual's investment in constitutive immune defenses depends on both intrinsic and extrinsic factors. We examined how Leucocytozoon parasite presence, body condition (scaled mass), heterophil-to-lymphocyte (H:L) ratio, sex, and age affected immune defenses in golden eagle (Aquila chrysaetos) nestlings from three regions: California, Oregon, and Idaho. We quantified hemolytic-complement activity and bacterial killing ability, two measures of constitutive immunity. Body condition and age did not affect immune defenses. However, eagles with lower H:L ratios had lower complement activity, corroborating other findings that animals in better condition sometimes invest less in constitutive immunity. In addition, eagles with Leucocytozoon infections had higher concentrations of circulating complement proteins but not elevated opsonizing proteins for all microbes, and eagles from Oregon had significantly higher constitutive immunity than those from California or Idaho. We posit that Oregon eagles might have elevated immune defenses because they are exposed to more endoparasites than eagles from California or Idaho, and our results confirmed that the OR region has the highest rate of Leucocytozoon infections. Our study examined immune function in a free-living, long-lived raptor species, whereas most avian ecoimmunological research focuses on passerines. Thus, our research informs a broad perspective regarding the evolutionary and environmental pressures on immune function in birds.


Subject(s)
Animals, Newborn/immunology , Eagles/immunology , Age Factors , Animals , Apicomplexa/immunology , Bird Diseases/immunology , Bird Diseases/parasitology , California , Complement System Proteins/immunology , Environment , Female , Idaho , Male , Oregon , Protozoan Infections, Animal/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...