Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063690

ABSTRACT

Mid IR Quantum cascade lasers are of high interest for the scientific community due to their unique applications. However, the QCL designs require careful engineering to overcome some crucial disadvantages. One of them is active region (ARn) overheating, which significantly affects laser characteristics, even in the pulsed mode. In this work, we consider the effects related to the nonequilibrium temperature distribution when thermal resistance formalism is irrelevant. We employ the heat equation and discuss the possible limitations and structural features stemming from the chemical composition of the ARn. We show that the presence of solid solutions in the ARn structure fundamentally limits the heat dissipation in pulsed and CW regimes due to their low thermal conductivity compared with binary compounds. Also, the QCL postgrowths affect the thermal properties of a device closer to CW mode, while it is by far less important in the short-pulsed mode.

2.
Sci Rep ; 8(1): 14618, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279432

ABSTRACT

Multimode high-power laser diodes suffer from inefficient beam focusing, leading to a focal spot 10-100 times greater than the diffraction limit. This inevitably restricts their wider use in 'direct-diode' applications in materials processing and biomedical photonics. We report here a 'super-focusing' characteristic for laser diodes, where the exploitation of self-interference of modes enables a significant reduction of the focal spot size. This is achieved by employing a conical microlens fabricated on the tip of a multimode optical fibre using 3D laser nano-printing (also known as multi-photon lithography). When refracted by the conical surface, the modes of the fibre-coupled laser beam self-interfere and form an elongated narrow focus, usually referred to as a 'needle' beam. The multiphoton lithography technique allows the realisation of almost any optical element on a fibre tip, thus providing the most suitable interface for free-space applications of multimode fibre-delivered laser beams. In addition, we demonstrate the optical trapping of microscopic objects with a super-focused multimode laser diode beam thus rising new opportunities within the applications sector where lab-on-chip configurations can be exploited. Most importantly, the demonstrated super-focusing approach opens up new avenues for the 'direct-diode' applications in material processing and 3D printing, where both high power and tight focusing is required.

3.
Opt Express ; 26(11): 14433-14443, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29877481

ABSTRACT

Usually electromagnetic modes inside a laser resonator are a matter of the theoretical studies. In a sense we manage "to have a look into a whispering gallery mode (WGM) resonator" and observe how the resonator modes arrange in reality. The picture occurs to be quite different from the commonly used Bessel modes in a disk resonator. A chance to explore optical modes inside a resonator appears in a WGM laser with a cleaved cavity. The flat laser facet gives an opportunity to study both far and near field patterns formed by different modes. In this research we use a high resolution technique of detection of laser emission based on an atomic force microscope, which allowed us to visualize even high Q modes normally sealed inside the resonator. This information was completed with spatially resolved emission spectra and far-field patterns measured using an infrared camera. The analysis of the obtained results using both wave and geometrical optics approaches and finite elements simulations showed that emission of the studied devices is governed by a few low order optical modes experiencing a small number of reflections from the resonator walls. These modes can be considered as counter propagating Gaussian beams and their interference at the laser facet was also observed in the experiment. This work showed that, contrary to conventional ridge or surface emitting lasers, in such deformed disk resonators outputs of different optical modes are spatially separated and can be studied individually along the cleaved facet of the laser.

4.
Opt Lett ; 40(14): 3400-3, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26176479

ABSTRACT

We present a semiconductor disk laser (SDL) emitting at the wavelength of 1.3 µm. The active region of the SDL comprises InAs quantum dots (QDs) that are embedded into InGaAs quantum wells (QWs). An output power over 200 mW is obtained at 15°C, which represents the highest output power reported from QD-based SDLs in this wavelength range. The results demonstrate the feasibility of QD-based gain media for fabricating SDLs emitting at 1.3 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...