Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(42): 10147-10157, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37849354

ABSTRACT

Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate-protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 µA and 5 µA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.


Subject(s)
Escherichia coli , Mannose , Humans , Reproducibility of Results , Bacteria , Polyesters
2.
ACS Appl Mater Interfaces ; 14(4): 5328-5337, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35049272

ABSTRACT

Electronic waste produced by plastic, toxic, and semiconducting components of existing electronic devices is dramatically increasing environmental pollution. To overcome these issues, the use of eco-friendly materials for designing such devices is attaining much attention. This current work presents a recycled material-based triboelectric nanogenerator (TENG) made of plastic waste and carbon-coated paper wipes (C@PWs), in which the PWs are also collected from a waste bin. The resultant C@PW-based TENG is then used for powering low-power electronic devices and, later, to generate a Morse code from a wearable for autonomous communication. In this application, the end users decode the Morse code from a customized LabVIEW program and read the transmitted signal. With further redesigning, a 9-segment keyboard is developed using nine-TENGs, connected to an Arduino controller to display the 9-segment actuation on a computer screen. Based on the above analysis, our C@PW-TENG device is expected to have an impact on future self-powered sensors and internet of things systems.

3.
ACS Appl Mater Interfaces ; 10(28): 24181-24192, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29947215

ABSTRACT

Triboelectric nanogenerator (TENG) technology is an emerging field to harvest various kinds of mechanical energies available in our living environment. Nowadays, for industrial and large-scale area applications, developing the TENG with low device processing cost and high electrical output is a major issue to be resolved. Herein, we designed a TENG with low cost by employing the microgrooved architectured (MGA)-poly(tetrafluoroethylene) (PTFE; Teflon) and aluminum as triboelectric materials with opposite tendencies. Moreover, the MGA-PTFE was fabricated by a single-step, facile, and cost-effective thermal imprinting lithography technique via micropyramidal textured silicon as a master mold, fabricated by a wet-chemical etching method. Therefore, designing the TENG device by following these techniques can definitely reduce its manufacturing cost. Additionally, the electrical output of TENG was enhanced by adjusting the imprinting parameters of MGA-PTFE. Consequently, the MGA-PTFE was optimized at an imprinting pressure and temperature of 5 MPa and 280 °C, respectively. Thus, the TENG with an optimal MGA-PTFE polymer exhibited the highest electrical output. A robustness test of TENG was also performed, and its output power was used to drive light-emitting diodes and portable electronic devices. Finally, the real application of TENG was also examined by employing it as a smart floor and object-falling detector.

4.
ACS Appl Mater Interfaces ; 10(15): 13113-13123, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29569898

ABSTRACT

Biomimetic microarchitectured polymer layers, such as inverted hemispherical architectured (IHSA)-polydimethylsiloxane (PDMS) and hemispherical architectured (HSA)-PDMS layers, were prepared by a simple and cost-effective soft-imprinting lithography method via a hexagonal close-packed polystyrene microsphere array/silicon mold. The IHSA-PDMS/glass possessed superior antireflection (AR) characteristics with the highest/lowest average transmittance/reflectance ( Tavg/ Ravg) values of approximately 89.2%/6.4% compared to the HSA-PDMS/glass, flat-PDMS/glass, and bare glass ( Tavg/ Ravg ∼88.8%/7.5%, 87.5%/7.9%, and 87.3%/8.8%, respectively). In addition, the IHSA-PDMS/glass also exhibited a relatively strong light-scattering property with the higher average haze ratio ( Havg) of ∼38% than those of the bare glass, flat-PDMS/glass, and HSA-PDMS/glass (i.e., Havg ≈ 1.1, 1.7, and 34.2%, respectively). At last, to demonstrate the practical feasibility under light control of the solar cells, the IHSA-PDMS was laminated onto the glass substrates of perovskite solar cells (PSCs) as an AR layer, and their device performances were explored. Consequently, the short-circuit current density of the PSCs integrated with the IHSA-PDMS AR layer was improved by ∼17% when compared with the device without AR layer, resulting in the power conversion efficiency (PCE) up to 19%. Therefore, the IHSA-PDMS is expected to be applied as an AR layer for solar cells to enhance their light absorption as well as the PCE.

5.
ACS Appl Mater Interfaces ; 8(44): 30165-30175, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27759367

ABSTRACT

We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

6.
ACS Appl Mater Interfaces ; 7(37): 20520-9, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26301328

ABSTRACT

Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 µA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 µA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...