Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 037102, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012809

ABSTRACT

We reply to the Comment by Donath et al. on our setup, which allows a total 3D control of the polarization direction of the electron beam in an inverse photoemission spectroscopy (IPES) experiment, a significant advance with respect to previous setups with partial polarization control. Donath et al. claim an incorrect operation of our setup after comparing their results, treated to enhance the spin asymmetry, with our spectra without the same treatment. They also equal spectra backgrounds instead of equaling peak intensities above the background. Thus, we compare our Cu(001) and Au(111) results with the literature. We reproduce previous results, including spin-up/spin-down spectral differences observed for Au and not observed for Cu. Also, spin-up/spin-down spectral differences appear at the expected reciprocal space regions. In the Comment, it is also stated that our tuning of the spin polarization misses the target because the spectra background changes when tuning the spin. We argue that the background change is irrelevant to IPES since the information is contained in peaks produced by primary electrons, those having conserved their energy in the inverse photoemission process. Second, our experiments agree with previous results from Donath et al. [Wissing et al., New J. Phys. 15, 105001 (2013)] and with a zero-order quantum-mechanical model of spins in vacuum. Deviations are explained by more realistic descriptions including the spin transmission through an interface. Consequently, the operation of our original setup is fully demonstrated. Our development corresponds to "the promising and rewarding angle-resolved IPES setup with the three-dimensional spin resolution," as indicated in the Comment, after our work.

2.
Rev Sci Instrum ; 93(9): 093904, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182468

ABSTRACT

A new spin- and angle-resolved inverse photoemission setup with a low-energy electron source is presented. The spin-polarized electron source, with a compact design, can decouple the spin polarization vector from the electron beam propagation vector, allowing one to explore any spin orientation at any wavevector in angle-resolved inverse photoemission. The beam polarization can be tuned to any preferred direction with a shielded electron optical system, preserving the parallel beam condition. We demonstrate the performances of the setup by measurements on Cu(001) and Au(111). We estimate the energy resolution of the overall system at room temperature to be ∼170 meV from kBTeff of a Cu(001) Fermi level, allowing a direct comparison to photoemission. The spin-resolved operation of the setup has been demonstrated by measuring the Rashba splitting of the Au(111) Shockley surface state. The effective polarization of the electron beam is P = 30% ± 3%, and the wavevector resolution is ΔkF ≲ 0.06 Å-1. Measurements on the Au(111) surface state demonstrate how the electron beam polarization direction can be tuned in the three spatial dimensions. The maximum of the spin asymmetry is reached when the electron beam polarization is aligned with the in-plane spin polarization of the Au(111) surface state.

3.
Ultramicroscopy ; 111(11): 1574-80, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21945997

ABSTRACT

This article describes a novel software tool, the KSpaceNavigator, which combines sample stage and crystallographic coordinates in a control sphere. It also provides simulated kinematic diffraction spot patterns, Kikuchi line patterns and a unit cell view in real time, thus allowing intuitive and transparent navigation in reciprocal space. By the overlay of experimental data with the simulations and some interactive alignment algorithms, zone axis orientations of the sample can be accessed quickly and with great ease. The software can be configured to work with any double-tilt or tilt-rotation stage and overcomes nonlinearities in existing goniometers by lookup tables. A subroutine for matching the polyhedral shape of a nanoparticle assists with 3D analysis and modeling. The new possibilities are demonstrated with the case of a faceted BaTiO(3) nanoparticle, which is tilted into three low-index zone axes using the piezo-controlled TEAM stage, and with a multiply twinned tetrahedral Ge precipitate in Al, which is tilted into four equivalent zone axes using a conventional double-tilt stage. Applications to other experimental scenarios are also outlined.

4.
Microsc Microanal ; 14(5): 469-77, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18793491

ABSTRACT

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

5.
Phys Rev Lett ; 77(11): 2308-2311, 1996 Sep 09.
Article in English | MEDLINE | ID: mdl-10061911
SELECTION OF CITATIONS
SEARCH DETAIL
...