Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 4(1): 11, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253823

ABSTRACT

BACKGROUND: Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with Type 2 diabetes (T2D). METHODS: We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies. RESULTS: Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort. CONCLUSIONS: Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.


People living with type 2 diabetes (T2D) are more likely to develop problems with their heart or blood circulation, known as cardiovascular disease (CVD), than people who do not have T2D. However, it can be difficult to predict which people with T2D are most likely to develop CVD. This is because current approaches, such as blood tests, do not identify all people with T2D who are at an increased risk of CVD. In this study we reviewed published papers that investigated the differences between people with T2D who experienced CVD compared to those who did not. We found some indicators that could potentially be used to determine which people with T2D are most likely to develop CVD. More studies are needed to determine how useful these are. However, they could potentially be used to enable clinicians to provide targeted advice and treatment to those people with T2D at most risk of developing CVD.

2.
medRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37162891

ABSTRACT

Background Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with type 2 diabetes (T2D). Methods We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies. Results Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort. Conclusions Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.

3.
Sci Rep ; 9(1): 9074, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235823

ABSTRACT

Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA-/-MafB+/-, but not MafA-/- islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.


Subject(s)
Gene Expression Regulation , Islets of Langerhans/pathology , Maf Transcription Factors, Large/metabolism , MafB Transcription Factor/metabolism , Animals , Antigen-Presenting Cells/metabolism , Autoimmunity , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , Gene Knockout Techniques , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Islets of Langerhans/immunology , Maf Transcription Factors, Large/deficiency , Maf Transcription Factors, Large/genetics , MafB Transcription Factor/deficiency , MafB Transcription Factor/genetics , Mice , Mutation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
4.
Life Sci Alliance ; 1(4): e201800079, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30456365

ABSTRACT

Although it is firmly established that endogenous immunity can prevent cancer outgrowth, with a range of immunomodulatory strategies reaching clinical use, most studies on the topic have been restricted to solid cancers. This applies in particular to cancer initiation, where model constraints have precluded investigations of immunosurveillance and immunoediting during the multistep progression into acute myeloid leukemia (AML). Here, we used a mouse model where the chimeric transcription factor MLL-ENL can be conditionally activated in vivo as a leukemic "first-hit," which is followed by spontaneous transformation into AML. We observed similar disease kinetics regardless of whether AML developed in WT or immunocompromised hosts, despite more permissive preleukemic environments in the latter. When assessing transformed AML cells from either primary immunocompetent or immunocompromised hosts, AML cells from all sources could be targets of endogenous immunity. Our data argue against immunoediting in response to selective pressure from endogenous immunity as a universal primary transformation event in AML.

5.
Cell Rep ; 21(8): 2251-2263, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166614

ABSTRACT

A gradual restriction in lineage potential of multipotent stem/progenitor cells is a hallmark of adult hematopoiesis, but the underlying molecular events governing these processes remain incompletely understood. Here, we identified robust expression of the leukemia-associated transcription factor hepatic leukemia factor (Hlf) in normal multipotent hematopoietic progenitors, which was rapidly downregulated upon differentiation. Interference with its normal downregulation revealed Hlf as a strong negative regulator of lymphoid development, while remaining compatible with myeloid fates. Reciprocally, we observed rapid lymphoid commitment upon reduced Hlf activity. The arising phenotypes resulted from Hlf binding to active enhancers of myeloid-competent cells, transcriptional induction of myeloid, and ablation of lymphoid gene programs, with Hlf induction of nuclear factor I C (Nfic) as a functionally relevant target gene. Thereby, our studies establish Hlf as a key regulator of the earliest lineage-commitment events at the transition from multipotency to lineage-restricted progeny, with implications for both normal and malignant hematopoiesis.


Subject(s)
Cell Lineage/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Leukemia/metabolism , Multipotent Stem Cells/cytology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/physiology , Gene Expression Regulation/physiology , Lymphopoiesis/physiology , Mice , Myeloid Cells/metabolism
6.
Traffic ; 14(7): 798-809, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23590328

ABSTRACT

In order to fuse lytic granules (LGs) with the plasma membrane at the immunological synapse, cytotoxic T lymphocytes (CTLs) have to render these LGs fusion-competent through the priming process. In secretory tissues such as brain and neuroendocrine glands, this process is mediated by members of the Munc13 protein family. In human CTLs, mutations in the Munc13-4 gene cause a severe loss in killing efficiency, resulting in familial hemophagocytic lymphohistiocytosis type 3, suggesting a similar role of other Munc13 isoforms in the immune system. Here, we investigate the contribution of different Munc13 isoforms to the priming process of murine CTLs at both the mRNA and protein level. We demonstrate that Munc13-1 and Munc13-4 are the only Munc13 isoforms present in mouse CTLs. Both isoforms rescue the drastical secretion defect of CTLs derived from Munc13-4-deficient Jinx mice. Mobility studies using total internal reflection fluorescence microscopy indicate that Munc13-4 and Munc13-1 are responsible for the priming process of LGs. Furthermore, the domains of the Munc13 protein, which is responsible for functional fusion, could be identified. We conclude from these data that both isoforms of the Munc13 family, Munc13-1 and Munc13-4, are functionally redundant in murine CTLs.


Subject(s)
Exocytosis , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Secretory Vesicles/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Animals , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...