Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis Sci ; 64(1): 76-83, 2019 01.
Article in English | MEDLINE | ID: mdl-30382540

ABSTRACT

BACKGROUND: Wnt-ß-catenin signaling is essential for homeostasis of intestinal stem cells in mice and is thought to promote intestinal crypt fission. AIMS: The aim of this study was to investigate Wnt-ß-catenin signaling in intestinal crypts of human infants. METHODS: Duodenal biopsies from nine infants (mean, range 0.9 years, 0.3-2 years) and 11 adults (mean, range 43 years, 34-71 years) were collected endoscopically. Active ß-catenin signaling was assessed by cytoplasmic and nuclear ß-catenin, nuclear c-Myc, and cytoplasmic Axin-2 expression in the base of crypts. Tissues were stained by an immunoperoxidase staining technique and quantified as pixel energy using cumulative signal analysis. Data were expressed as mean ± SD and significance assessed by Student's t test. RESULTS: Crypt fission was significantly higher in infants compared to adults (16 ± 8.6% versus 0.7 ± 0.6%, respectively, p < 0.0001). Expression of cytoplasmic and nuclear ß-catenin was 1.8-fold (p < 0.0001) and 2.9-fold (p < 0.0001) higher in infants, respectively, while cytoplasmic Axin-2 was 3.1-fold (p < 0.0001) increased in infants. c-Myc expression was not significantly different between infants and adults. Expression was absent in Paneth cells but present in the transit amplifying zone of crypts. Crypt base columnar cells, which were intercalated between Paneth cells, expressed c-Myc. CONCLUSIONS: Wnt-ß-catenin signaling was active in crypt base columnar cells (i.e., intestinal stem cells) in human infants. This signaling could promote crypt fission during infancy. Wnt-ß-catenin signaling likely acts in concert with other pathways to promote postnatal growth.


Subject(s)
Duodenum/chemistry , Intestinal Mucosa/chemistry , Wnt Signaling Pathway , beta Catenin/analysis , Adult , Age Factors , Aged , Axin Protein/analysis , Duodenum/growth & development , Female , Humans , Infant , Intestinal Mucosa/growth & development , Male , Middle Aged , Paneth Cells/chemistry , Proto-Oncogene Proteins c-myc/analysis , Stem Cells/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...