Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(8): 4907-4915, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37493090

ABSTRACT

Silica nanoparticles (SiNPs) are widely used in biomedical applications, such as cancer therapy/diagnosis or tissue engineering and regenerative medicine. Herein, we synthesized SiNPs and modified them with sulfonic acid groups (by organosilylation followed by oxidation) or a sulfated polysaccharide (i.e., fucoidan, a seaweed biopolymer, by using electrostatic surface immobilization) due to the known capacity of the sulfonic/sulfate moieties to stabilize proteins and promote stem cell differentiation toward the osteogenic lineage. The developed pristine and functionalized nanoparticles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), showing the monodisperse size distribution (between 360 and 450 nm) and the success of the coating/functionalization with fucoidan or sulfonic groups. The developed SiNPs (at a concentration of 50 µg/mL) were assessed through their contact with SaOs2 cells evidencing their cytocompatibility. Furthermore, the osteogenic differentiation of bmMSCs was evaluated by the quantification of ALP activity, as well as the expression profile of osteogenic-related genes, such as Runx2, ALP, and OP. We found that the coating of the SiNPs with fucoidan induced the osteogenic differentiation of bmMSCs, being an effective mediator of bone regeneration.

2.
J Colloid Interface Sci ; 470: 132-141, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26939077

ABSTRACT

Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.


Subject(s)
Caffeic Acids/chemistry , Quantum Theory , Silicon Dioxide/chemistry , Temperature , Mass Spectrometry , Molecular Structure , Particle Size , Spectrophotometry, Ultraviolet , Surface Properties , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...