Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36992286

ABSTRACT

Presence of a large foreign workforce and the annual gathering of people for pilgrimage from around the globe have significantly contributed to the emergence and diversity of respiratory viruses in Saudi Arabia. Here, we report the sequence and phylogenetic analysis of the H3N2 subtype of influenza A virus (IAV) in clinical samples collected from Riyadh, Saudi Arabia. Based on RT-PCR, IAV was found in 88 (28.3%) of the 311 samples screened. Of the 88-IAV positive samples, 43 (48.8%) were H1N1 subtype while the remaining 45 (51.2%) were found to be of the H3N2 subtype. Complete sequencing of HA and NA genes of H3N2 revealed, twelve and nine amino acid (AA) substitutions respectively, and importantly, these variations are absent in the current vaccine strains. Based on the phylogenetic analysis, the majority of H3N2 strains were grouped in the same clades as the vaccine strains. Importantly, the N-glycosylation sites at AA 135(NSS) were found to be unique to 6 strains in the investigated HA1 protein and were absent in the current vaccine strains. These data may have significant clinical implications in designing novel and population-based vaccines for IAV and underscore the need for regular monitoring of efficacy of vaccines due to emerging variants.

2.
Genes (Basel) ; 13(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36553555

ABSTRACT

Human orthopneumovirus (HOPV) is the major viral pathogen responsible for lower respiratory tract infections (LRTIs) in infants and young children in Riyadh, Saudi Arabia. Yet, predominant HOPV subtypes circulating in this region and their molecular and epidemiological characteristics are not fully ascertained. A total of 300 clinical samples involving nasopharyngeal aspirates (NPAs), throat swabs, and sputum were collected during winter seasons of 2019/2020 and 2021/2022 for HOPV subtyping and genotyping. Of the 300 samples, HOPV was identified in 55 samples (18.3%) with a distinct predominance of type A viruses (81.8%) compared to type B viruses (18.2%). Importantly, the ON1 strain of HOPV-A and BA-IX strain of HOPV-B groups were found to be responsible for all the infections. Sequence analysis revealed a duplication region within 2nd HVR of G protein gene of ON1 and BA-IX strains. This nucleotide duplication exerted a profound effect on protein length and affinity towards cell receptors. Further, these modifications may aid the HOPV in immune evasion and recurrent infections. Data from this study showed that ON-1 genotype of HOPV-A and BA-IX genotype of HOPV-B were dominant in Riyadh, Saudi Arabia. Further, a duplication of sequence within 2nd HVR of G protein gene was found.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Genotype , GTP-Binding Proteins/genetics , Phylogeny , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Saudi Arabia/epidemiology
3.
Viruses ; 14(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36560596

ABSTRACT

With the emergence of SARS-CoV-2, routine surveillance combined with sequence and phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical samples collected from hospitalized children with respiratory symptoms during four winter seasons. RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of sequence deletions and several mutations, of which some changed their corresponding amino acids. Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype C. Further long-term surveillance with a large number of clinical samples and sequences is necessary to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Respiratory Tract Infections , Humans , Child , Phylogeny , Coronavirus OC43, Human/genetics , Saudi Arabia/epidemiology , Prevalence , Pandemics , COVID-19/epidemiology , SARS-CoV-2/genetics , Seasons
4.
Diagnostics (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453960

ABSTRACT

Currently, the standard assay employed to diagnose human orthopneumovirus infection is real-time reverse transcriptase PCR assay (rRT-PCR), a costly and time-consuming procedure that requires the manipulation of infectious viruses. In addition to RT-PCR, serological tests can complement the molecular diagnostic methods and have proven to be important tools in sero-surveillance. In this study, we report the development, optimization, and validation of a novel and rapid in-house diagnostic ELISA kit to detect human orthopneumovirus in clinical samples. We developed three sensitive ELISA formats through the immunization of rats with novel recombinant pPOE-F or pPOE-TF vectors. The two vectors expressed either the full-length (pPOE-F) or the truncated form (pPOE-TF) of the fusion (F) protein. The developed ELISA kits were optimized for coating buffer, capture antibody, blocking buffer, sample antigen, detection antibodies, and peroxidase-conjugated antibody, and validated using 75 rRT-PCR-confirmed nasopharyngeal aspirate (NPA) human orthopneumovirus samples and 25 negative samples collected from hospitalized children during different epidemic seasons between 2014 and 2017. Our results indicate that rats immunized with pPOE-F or pPOE-TF showed significant induction of high levels of MPAs. Validation of the ELISA method was compared to the rRT-PCR and the sensitivity hierarchy of these developed ELISA assays was considered from highest to lowest: indirect competitive inhibition ELISA (93.3%) > indirect antigen-capture ELISA (90.6%) > direct antigen-capture ELISA (86.6%). The development of the rapid in-house diagnostic ELISA kits described in this study demonstrates that a specific, rapid and sensitive test for human orthopneumovirus antigens could be successfully applied to samples collected from hospitalized children during different epidemics and can help in the efficient diagnosis of respiratory syncytial viral infections.

5.
Chemosphere ; 270: 128629, 2021 May.
Article in English | MEDLINE | ID: mdl-33168289

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are widely applied in industrial, household and medical areas that lead to its discharge and accumulation in ecosystem. Here, the toxic effect of ZnO NPs in presence and absence of bovine serum albumin (BSA) was analyzed. The difference in toxicity of bare ZnO and BSA interacted ZnO was studied with different environmental models. P. aeruginosa and S. aureus were used as model bacterial systems. Toxicity against bacteria was determined by employing plate count method. C. pyrenoidsa was used as algal system for evaluating toxicity and it was determined by chlorophyll estimation assay. Daphnia sp. was chosen as crustacean system model. A. cepa root cells were chosen as plant model. ZnO NPs increased the ROS formation, lipid peroxidation and oxidative stress and it reduced in the presence of BSA. The cytotoxicity, chromosomal aberrations and micronuclei (MN) index of A. cepa were increased after ZnO NPs treatment. Same time the toxic effect was decreased in case of BSA coated ZnO NPs. The NPs toxic potential on the organisms decreased in the order of P. aeruginosa (LC50-0.092 mg/L) > S. aureus (LC50-0.33 mg/L) > Daphnia sp (LC50-0.35 mg/L) > C. pyrenoidosa (LC50-8.17 mg/L). LC50 in presence of BSA was determined to be 18.45, 26.24, 17.27 and 53.97 mg/L for P. aeruginosa, S. aureus, Daphnia sp and C. pyrenoidosa respectively. Therefore, the report suggests that BSA stabilized ZnO NPs could be more amenable towards applications in biotechnology and bioengineering.


Subject(s)
Metal Nanoparticles , Nanoparticles , Protein Corona , Zinc Oxide , Animals , Bacteria , Ecosystem , Metal Nanoparticles/toxicity , Serum Albumin, Bovine/toxicity , Staphylococcus aureus , Zinc Oxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...