Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
2.
J Neurophysiol ; 113(1): 116-31, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25253471

ABSTRACT

Benzodiazepine drugs, through interaction with GABA(Aα1), GABA(Aα2,3), and GABA(Aα5) subunits, modulate cortical network oscillations, as reflected by a complex signature in the EEG power spectrum. Recent drug discovery efforts have developed GABA(Aα2,3)-subunit-selective partial modulators in an effort to dissociate the side effect liabilities from the efficacy imparted by benzodiazepines. Here, we evaluated rat EEG and behavioral end points during dosing of nine chemically distinct compounds that we confirmed statistically to selectively to enhance GABA(Aα2,3)-mediated vs. GABA(Aα1) or GABA(Aα5) currents in voltage clamped oocytes transfected with those GABA(A) subunits. These compounds were shown with in vivo receptor occupancy techniques to competitively displace [(3)H]flumazenil in multiple brain regions following peripheral administration at increasing doses. Over the same dose range, the compounds all produced dose-dependent EEG spectral power increases in the ß- and and γ-bands. Finally, the dose range that increased γ-power coincided with that eliciting punished over unpunished responding in a behavioral conflict model of anxiety, indicative of anxiolysis without sedation. EEG γ-band power increases showed a significant positive correlation to in vitro GABA(Aα2,3) modulatory intrinsic activity across the compound set, further supporting a hypothesis that this EEG signature was linked specifically to pharmacological modulation of GABA(Aα2,3) signaling. These findings encourage further evaluation of this EEG signature as a noninvasive clinical translational biomarker that could ultimately facilitate development of GABA(Aα2,3)-subtype-selective drugs for anxiety and potentially other indications.


Subject(s)
Anti-Anxiety Agents/pharmacology , Beta Rhythm/drug effects , Brain/drug effects , GABA Agents/pharmacology , Gamma Rhythm/drug effects , Animals , Anti-Anxiety Agents/pharmacokinetics , Anxiety/drug therapy , Anxiety/physiopathology , Auditory Perception/drug effects , Auditory Perception/physiology , Beta Rhythm/physiology , Brain/physiopathology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Conflict, Psychological , Dose-Response Relationship, Drug , Electrodes, Implanted , Electroencephalography , GABA Agents/pharmacokinetics , Gamma Rhythm/physiology , Linear Models , Male , Patch-Clamp Techniques , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism
3.
Bioorg Med Chem ; 19(9): 2927-38, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21498079

ABSTRACT

Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.


Subject(s)
Receptors, GABA-A/chemistry , Allosteric Regulation , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Benzodiazepines/chemistry , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Quinolines/chemistry , Receptors, GABA-A/metabolism , Structure-Activity Relationship
4.
Eur J Pharm Sci ; 38(2): 121-37, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19591928

ABSTRACT

The purpose of the study was to assess the permeability of mouse blood-brain barrier (BBB) to a diverse set of compounds in the absence of P-glycoprotein (Pgp) mediated efflux, to predict it using an in combo PAMPA model, and to explore its role in brain penetration classification (BPC). The initial brain uptake (K(in)) of 19 compounds in both wild-type and Pgp mutant [mdr1a(-/-)] CF-1 mice was determined by the in situ brain perfusion technique. PAMPA measurements were performed, and the values were used to develop an in combo model, including Abraham descriptors. Published rodent K(in) values were used to enhance the dataset and validate the model. The model predicted 92% of the variance of the training set permeability. In all, 182 K(in) values were considered in this study, spanning four log orders of magnitude and where Pgp decreased brain uptake by as much as 14-fold. The calculated permeability-surface area (PS) values along with literature reported brain tissue binding were used to group molecules in terms of their brain penetration classification. The in situ BBB permeability can be predicted by the in combo PAMPA model to a satisfactory degree, and can be used as a lower-cost, high throughput first-pass screening method for BBB passive permeability.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Blood-Brain Barrier , Models, Biological , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Male , Mice , Mice, Knockout , Permeability , Pharmacokinetics
5.
Anal Biochem ; 366(2): 117-25, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17555702

ABSTRACT

Increasing evidence suggests a key role of transport proteins in the pharmacokinetics of drugs. Within the solute carrier (SLC) family, various organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs) that interact with drug molecules have been identified. Traditionally, cellular uptake assays require multiple steps and provide low experimental throughput. We here demonstrate the use of a scintillation proximity approach to detect substrate uptake by human drug transporters in real time. HEK293 cells stably transfected with hOCT1, hOATP1B1, or hOAT3 were grown directly in Cytostar-T scintillating microplates. Confluent cell monolayers were incubated with 14C- or 3H-labeled transporter substrates. Cellular uptake brings the radioisotopes into proximity with the scintillation plate base. The resulting light emission signals were recorded on-line in a microplate scintillation counter. Results show time- and concentration-dependent uptake of 14C-tetraethylammonium, 3H-methylphenylpyridinium (HEK-hOCT1), 3H-estradiol-17beta-D-glucuronide (HEK-hOATP1B1), and 3H-estrone-3-sulfate (HEK-hOAT3), while no respective uptake was detected in empty vector-transfected cells. Km of 14C-tetraethylammonium and 3H-estrone-3-sulfate uptake and hOAT3 inhibition by ibuprofen and furosemide were similar to conventional dish uptake studies. The scintillation proximity approach is high throughput, amenable to automation and allows for identification of SLC transporter substrates and inhibitors in a convenient and reliable fashion, suggesting its broad applicability in drug discovery.


Subject(s)
Octamer Transcription Factor-1/physiology , Organic Anion Transporters, Sodium-Independent/physiology , Organic Anion Transporters/physiology , Scintillation Counting , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Transport/drug effects , Carbon Isotopes/pharmacokinetics , Cell Line , Furosemide/pharmacokinetics , Furosemide/pharmacology , Glucuronides/pharmacokinetics , Humans , Ibuprofen/pharmacokinetics , Ibuprofen/pharmacology , Kinetics , Linear Models , Liver-Specific Organic Anion Transporter 1 , Octamer Transcription Factor-1/genetics , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Plasmids/genetics , Sodium Potassium Chloride Symporter Inhibitors/pharmacokinetics , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Tetraethylammonium/pharmacokinetics , Transfection , Tritium/pharmacokinetics
6.
J Drug Target ; 12(7): 405-13, 2004.
Article in English | MEDLINE | ID: mdl-15621665

ABSTRACT

Human intestinal Caco-2 cell monolayers grown in the presence of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) were used to test the hypothesis that drugs which interact with the apical efflux pump P-glycoprotein (Pgp) may enhance CYP3A4-mediated disappearance of substrates. 6beta-hydroxytestosterone production, a marker of CYP3A4 activity, was approximately 3- and 7-fold greater in 1,25(OH)2D3-treated cells compared to untreated cells when incubated with 50 and 500 microM testosterone, respectively, and was unaffected by the addition of digoxin to reduce Pgp activity. In the presence of digoxin, secretory transport of vinblastine and erythromycin, substrates for both Pgp and cytochrome P450 3A4 (CYP3A4), was significantly reduced, whereas absorptive transport was unaffected. In contrast, no directional transport of testosterone, a substrate for CYP3A4 only, was observed, either in the presence or absence of digoxin. Over 2 h, disappearance of erythromycin and vinblastine from the incubation medium was significantly greater from the basolateral than from the apical compartments. In the presence of digoxin, disappearance of both compounds from the basolateral, but not from the apical compartments, was significantly reduced. In contrast, disappearance of testosterone was unaffected by the addition of digoxin, demonstrating that the effect of digoxin on erythromycin and vinblastine disappearance was via inhibition of Pgp function, rather than on CYP3A4 activity. Thus, evidence is provided for Pgp/CYP3A4 co-substrates, Pgp potentiates CYP3A4-mediated drug disappearance during intestinal secretory detoxification.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Intestinal Mucosa/metabolism , Pharmaceutical Preparations/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Anti-Bacterial Agents/metabolism , Antineoplastic Agents, Phytogenic/metabolism , Caco-2 Cells , Calcitriol/metabolism , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , Erythromycin/metabolism , Humans , Inactivation, Metabolic , Intestines/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Stimulation, Chemical , Testosterone/metabolism , Vinblastine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...