Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(48): 56511-56525, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37990405

ABSTRACT

A series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent magnetic field within BaFe12O19. The morphology and crystal structure of the composites were confirmed by a combination of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses together with the detailed study of BaFe12O19 electronic and magnetic properties. The photocatalytic activity and magnetic field effect were studied in the reaction of phenol degradation for TiO2/BaFe12O19 and composites of BaFe12O19 covered with a SiO2 protective layer and TiO2. The observed differences in phenol degradation are associated with electron transfer and the contribution of the magnetic field. All obtained magnetic composite materials can be easily separated in an external magnetic field, with efficiencies exceeding 95%, and recycled without significant loss of photocatalytic activity. The highest activity was observed for the composite of BaFe12O19 with TiO2 exposing {1 0 1} facets. However, to prevent electron transfer within the composite structure, this photocatalyst material was additionally coated with a protective SiO2 layer. Furthermore, TiO2 exposing {1 0 0} facets exhibited significant synergy with the BaFe12O19 magnetic field, leading to 2 times higher photocatalytic activity when ferrite was magnetized before the process. The photoluminescence emission study suggests that for this particular combination, the built-in magnetic field of the ferrite suppressed the recombination of the photogenerated charge carriers. Ultimately, possible effects of complex electro/magnetic interactions within the magnetic photocatalyst are shown and discussed for the first time, including the anisotropic properties of both phases.

2.
Data Brief ; 31: 105814, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32551352

ABSTRACT

Surface modification of titania with noble and semi-noble metals resulted in significant enhancement of photocatalytic activity. Presented data, showing the photocatalytic properties of TiO2-M (where M is Pt and/or Cu) photocatalysts were further used as Fe3O4@SiO2/TiO2-M magnetic nanocomposites shells in "Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core-shell photocatalysts with Vis light activity and magnetic separability" [1]. Platinum and copper were photodeposited on four different titania matrices (commercial and self-obtained ones). The prepared photocatalysts were characterized by X-ray diffraction (XRD) analysis, specific surface area measurements using the Brunauer-Emmet-Teller (BET) isotherm, diffuse reflectance spectroscopy (DR-UV/Vis) analysis as well as scanning transmission electron microscopy (STEM) analysis. Photocatalytic properties were investigated in three different reactions: H2 generation, acetic acid oxidation to CO2, and phenol degradation.

3.
Materials (Basel) ; 13(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570821

ABSTRACT

Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20-50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials' photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that •O2- radical is mainly responsible for pollutant degradation.

4.
Sci Total Environ ; 724: 138167, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32251886

ABSTRACT

In the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 - tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery of nanosized TiO2 photocatalyst. The characterization of ZnFe2O4/SiO2/TiO2, including XRD, XPS, TEM, BET, DR/UV-Vis, impedance spectroscopy and photocatalytic analysis, showed that magnetic photocatalyst containing anatase phase revealed markedly improved etodolac decomposition and mineralization measured as TOC removal compared to photolysis reaction. The effect of irradiation and pH range on photocatalytic decomposition of etodolac was studied. The most efficient degradation of etodolac was observed under simulated solar light for a core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst at pH above 4 (pKa = 4.7) and below 7. The irradiation of etodolac solution in a broader light range revealed a synergetic effect on its photodegradation performance. After only 20 min of degradation, about 100% of etodolac was degraded. Based on the photocatalytic analysis in the presence of scavengers and HPLC analysis, the transformation intermediates and possible photodegradation pathways of etodolac were studied. It was found that ∙O2- attack on C2-C3 bond inside pyrrole ring results mostly in the hydroxylation of the molecule, which next undergoes -CH2COOH detachment to give 1,9-diethyl-3,4-dihydro-pyrano[3,4-b]indol-4a-ol. The obtained compound should further undergo subsequent hydropyran and pyrrole ring breaking to give a family of benzene derivatives.


Subject(s)
Etodolac , Silicon Dioxide , Catalysis , Magnetic Phenomena , Titanium
5.
RSC Adv ; 10(32): 18784-18796, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518324

ABSTRACT

The effect of hexadecyltrimethylammonium bromide (CTAB) addition on the crystal structure, morphology, and magnetic properties of co-precipitated hexagonal barium ferrite was investigated. For a fixed amount of surfactant, different Fe3+ concentrations and Fe3+/Ba2+ ratios were used to optimize the formation of single-phase barium ferrite particles. The results indicated that the obtained ferrite particles exhibited coercivity changes similar to those of superparamagnetic particles with larger than theoretically calculated particle sizes. This results from the softening of the material due to the size reduction of the grains and incorporation of excess barium, localized on the surface of the particles. Therefore, lowering the energy barrier required to reverse the magnetization was observed, while high magnetization saturation was preserved. The precipitation of barium ferrite particles from a surfactant-rich solution allowed control of BaFe12O19 magnetic properties without introducing any modifications inside the crystal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...