Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Brain Sci ; 13(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38002505

ABSTRACT

Traumatic brain injury has been the leading cause of mortality and morbidity in human beings. One of the most susceptible structures to this damage is the hippocampus due to cellular and synaptic loss and impaired hippocampal connectivity to the brain, brain stem, and spinal cord. Thus, hippocampal damage in rodents using a stereotaxic device could be an adequate method to study a precise lesion from CA1 to the dentate gyrus structures. We studied male and female rats and mice, analyzing hindlimb locomotion kinematics changes to compare the locomotion kinematics using the same methodology in rodents. We measure (1) the vertical hindlimb metatarsus, ankle, and knee joint vertical displacements (VD) and (2) the factor of dissimilarity (DF). The VD in intact rats in metatarsus, ankle, and knee joints differs from that in intact mice in similar joints. In rats, the vertical displacement through the step cycle changed in the left and right metatarsus, ankle, and knee joints compared to the intact group versus the lesioned group. More subtle changes were also observed in mice. DF demonstrates contrasting results when studying locomotion kinematics of mice or rats and sex-dependent differences. Thus, a precise lesion in a rodent's hippocampal structure discloses some hindlimb locomotion changes related to species and sex. Thus, we only have a qualitative comparison between murine species. In order to make a comparison with other species, we should standardize the model.

2.
Brain Sci ; 13(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36979306

ABSTRACT

Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee. We analyzed the steps dissimilarity factor between control and GBM mice with and without anastrozole. The body weight of the untreated animals decreased compared to treated mice. Anastrozole reduced the malignant cells and decreased GPR30 and ERα receptor expression. In addition, we observed a partial recovery in metatarsus and knee joint displacement (dissimilarity factor). The vertical axis displacement of the GBM+anastrozole group showed a difference in the right metatarsus, right knee, and left ankle compared to the GBM group. In the horizontal axis displacement of the right metatarsus, ankle, and knee, the GBM+anastrozole group exhibited a difference at the last third of the step cycle compared to the GBM group. Thus, anastrozole partially modified joint displacement. The dissimilarity factor and the vertical and horizontal displacements study will be of interest in GBM patients with locomotion alterations. Hindlimb displacement and gait locomotion analysis could be a valuable methodological tool in experimental and clinical studies to help diagnose locomotive deficits related to GBM.

3.
Exp Neurobiol ; 31(2): 89-96, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35673998

ABSTRACT

Spontaneous interneuron activity plays a critical role in developing neuronal networks. Discharges conducted antidromically along the dorsal root (DR) precede those from the ventral root's (VR) motoneurons. This work studied whether spinal interneurons project axons into the neonate's dorsal roots. Experiments were carried out in postnatal Swiss-Webster mice. We utilized a staining technique and found that interneurons in the spinal cord's dorsal horn send axons through the dorsal roots. In vitro electrophysiological recordings showed antidromic action potentials (dorsal root reflex; DRR) produced by depolarizing the primary afferent terminals. These reflexes appeared by stimulating the adjacent dorsal roots. We found that bicuculline reduced the DRR evoked by L5 dorsal root stimulation when recording from the L4 dorsal root. Simultaneously, the monosynaptic reflex (MR) in the L5 ventral root was not affected; nevertheless, a long-lasting after-discharge appeared. The addition of 2-amino-5 phosphonovaleric acid (AP5), an NMDA receptor antagonist, abolished the MR without changing the after-discharge. The absence of DRR and MR facilitated single action potentials in the dorsal and ventral roots that persisted even in low Ca2+ concentrations. The results suggest that firing interneurons could send their axons through the dorsal roots. These interneurons could activate motoneurons producing individual spikes recorded in the ventral roots. Identifying these interneurons and the persistence of their neuronal connectivity in adulthood remains to be established.

4.
Oncol Lett ; 24(1): 217, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35720489

ABSTRACT

Glioblastoma is the most frequent primary tumor in the human brain. Glioblastoma cells express aromatase and the classic estrogen receptors ERα and ERß and can produce estrogens that promote tumor growth. The membrane G protein-coupled estrogen receptor (GPER) also plays a significant role in numerous types of cancer; its participation in glioblastoma tumor development is not entirely known. The present study investigated the effect of the agonists [17ß-estradiol (E2) and G1] and antagonist (G15) of GPER on proliferation and apoptosis of C6 glioblastoma cells. GPER expression was evaluated by immunofluorescence, western blotting and reverse transcription-quantitative PCR. Cell proliferation was determined using Ki67 immunopositivity. Cell viability was examined using the MTT assay and apoptosis using caspase-3 immunostaining and ELISA. C6 cells express GPER, and the immunopositivity increased after exposure to E2, G1, or their combination. GPER protein expression increased after treatment with E2 combined with G1. However, GPER mRNA expression decreased in treated cells compared with control. The percentage of Ki67 immunopositive C6 cells increased under the effect of E2 in combination with G1 or G1 alone. G15 significantly reduced Ki67 immunopositivity. Pearson's correlation analysis revealed a positive relationship between GPER and Ki67 immunopositivity across the study conditions. Additionally, the MTT assay showed a significant reduction in C6 cell viability after G15 treatment, alone or in combination with G1. The exposure to G15 increased the percentage of caspase-3 immunopositivity cells and caspase-3 levels. Pearson's correlation analysis demonstrated a negative correlation between GPER and caspase-3 immunopositivity across the study conditions. Glioblastoma C6 cells express GPER, and this receptor modulates cell proliferation and apoptosis. The GPER agonists E2 and G1 favored cell proliferation; meanwhile, the antagonist G15 reduced cell proliferation, viability and favored apoptosis. Therefore, GPER may be used as a biomarker of glioblastoma and as a target to develop new therapeutic strategies for glioblastoma treatment.

5.
Pathogens ; 10(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208827

ABSTRACT

Toxoplasmosis is a disease, which was discovered in 1908, caused by the intracellular parasite Toxoplasma gondii. T. gondii infects neuronal, glial, and muscle cells, and chronic infections are characterized by the presence of cysts, in the brain and muscle cells, formed by bradyzoites. T. gondii is capable of synthesizing L-DOPA, a precursor of dopamine. Dopamine is a neurotransmitter that is key in the etiology of neuropsychological disorders such as schizophrenia. Previous studies have shown high levels of IgG Toxoplasma antibodies in schizophrenia patients. Many published studies show that the prevalence of toxoplasmosis is higher in schizophrenia patients. In this study, we aimed to identify the prevalence of Toxoplasma infection in patients with schizophrenia and the relationships between, sociodemographic factors and the Brief Psychiatric Rating Scale. A total of 27 schizophrenic patients were included and IgG anti-T. gondii was determined in serum samples by ELISA. The Brief Psychiatric Rating Scale, sociodemographic factors were associated with seropositivity. We found that the prevalence of Toxoplasma antibodies was 51.7%. In the Brief Psychiatric Rating Scale, statistical significant association (p = 0.024) was found in Item 13 which is related to motor retardation, however, the association turned non-significant after of correction for multiple tests or after of analyzed with a logistic regression p = 0.059, odds ratio (OR) = 2.316 with a 95% confidence interval [0.970 to 5.532]. Other association was not found between toxoplasmosis and others factors. The prevalence of toxoplasmosis on our population under study was significantly higher than that reported by general population or other group of Mexican schizophrenia patients.

6.
Front Cell Neurosci ; 14: 579162, 2020.
Article in English | MEDLINE | ID: mdl-33192324

ABSTRACT

Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests. We described a new quantitative method that allows us to analyze and compare the displacement curves between mice steps. In the tunnel walk, we marked mice with indelible ink on the knee, ankle, and metatarsus of the left and right hindlimbs to evaluate both in every step. Animals with hippocampal damage exhibit slower locomotion speed in both hindlimbs. In contrast, in the cortical injured group, we observed significant speed decrease only in the right hindlimb. We found changes in the displacement patterns after hippocampal injury. Mesenchymal stem cell-derived extracellular vesicles had been used for the treatment of several diseases in animal models. Here, we evaluated the effects of intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles on the outcome after the hippocampal injury. We report the presence of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, and interleukin 6 in these vesicles. We observed locomotion speed and displacement pattern preservation in mice after vesicle treatment. These mice had lower pyknotic cells percentage and a smaller damaged area in comparison with the nontreated group, probably due to angiogenesis, wound repair, and inflammation decrease. Our results build up on the evidence of the hippocampal role in walk control and suggest that the extracellular vesicles could confer neuroprotection to the damaged hippocampus.

7.
J Stroke Cerebrovasc Dis ; 29(5): 104773, 2020 May.
Article in English | MEDLINE | ID: mdl-32199775

ABSTRACT

Brain ischemia is one of the principal causes of death and disability worldwide in which prevention or an effective treatment does not exist. In order to develop successful treatments, an adequate and useful ischemia model is essential. Transient global cerebral ischemia is one of the most interesting pathological conditions in stroke studies because of the observed degeneration of forebrain and delayed neuronal cell death in selective vulnerable regions such as hippocampus. Transient occlusion of both common carotid arteries is the most convenient model to induce tGCI. Although there are effective rat and gerbil models using this method, the induction of a reproducible and reliable injury after global ischemia in mouse has presented higher variations, mainly because of its size and the necessary monitoring skills in order to accomplish homogeneous and reproducible results. Further, great variability among cerebral vasculature and susceptibility of the different strains and sub-strains is observed. In recent years, some modifications have been made to the model in order to normalize the heterogenic effects. Analysis of posterior communicating artery patency has been proposed as an exclusion parameter due to the direct relationship reported with the reduction of cerebral blood flow. Another method used to significantly reduce blood flow is the induction of hypotension with isoflurane. Each protocol produces distinct injury outcomes. Further improvements are needed to attain a general, simpler, reproducible and globally accepted model that allows comparisons between research groups, progress in understanding ischemia and the consequent development of therapeutic alternatives for ischemic injury.


Subject(s)
Brain Ischemia/physiopathology , Brain/blood supply , Carotid Artery, Common/surgery , Cerebrovascular Circulation , Animals , Blood Flow Velocity , Brain/pathology , Brain Ischemia/etiology , Brain Ischemia/pathology , Carotid Artery, Common/physiopathology , Constriction , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Species Specificity , Time Factors
8.
Article in English | MEDLINE | ID: mdl-32174815

ABSTRACT

Background: The spinal cord's central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.


Subject(s)
Ablation Techniques , Cerebral Cortex/physiology , Decerebrate State/physiopathology , Peripheral Nerves/physiology , Reflex, Monosynaptic/physiology , Spinal Cord/physiology , Ablation Techniques/methods , Animals , Brain/drug effects , Brain/physiology , Brain/surgery , Cats , Cerebral Cortex/drug effects , Cerebral Cortex/surgery , Electric Stimulation/methods , Motor Neurons/drug effects , Motor Neurons/physiology , Peripheral Nerves/drug effects , Reflex, Monosynaptic/drug effects , Serotonin/administration & dosage , Serotonin Antagonists/administration & dosage , Spinal Cord/drug effects , Spinal Cord/surgery , Superior Colliculi/drug effects , Superior Colliculi/physiology , Superior Colliculi/surgery
9.
Microorganisms ; 7(11)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752159

ABSTRACT

Chronic infection with the intracellular parasite Toxoplasma gondii produces an accumulation of cysts in the brain and muscle, causing tissue damage. The cysts in the brain motor regions affect some kinematic locomotion parameters in the host. To localize the brain cysts from Toxoplasma gondii and study the changes in kinematic locomotion in C57BL/6 mice. Female adult C57BL/6 mice were infected orally with 30 ME-49 Toxoplasma gondii cysts. An uninfected group (n = 7) and two infected groups, examined 15 and 40 days postinfection, were used for this study. To evaluate kinematic locomotion, the mice were marked with indelible ink on the iliac crest, hip, knee, ankle, and phalangeal metatarsus of the left and right hindlimbs. At least three recordings were carried out to obtain videos of the left and right hindlimbs. Mice were video recorded at 90 fps at a resolution of 640 × 480 pixels while walking freely in a transparent Plexiglass tunnel. We measured the hindlimb pendular movement and the hindlimb transfer [linear displacement] curves for each step and evaluated them statistically with Fréchet dissimilarity tests. Afterward, the mice were sacrificed, and the brain, heart, skeletal muscle, lung, liver, and kidney were obtained. The different tissues were stained with hematoxylin and eosin for analysis with optical microscopy. Topographic localization of the cysts was made using bregma coordinates for the mouse brain. The cysts were distributed in several brain regions. In one mouse, cyst accumulation occurred in the hippocampus, coinciding with an alteration in foot displacement. The step length was different among the different studied groups.

10.
Biomed Eng Online ; 17(Suppl 1): 134, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30458788

ABSTRACT

BACKGROUND: Laboratory rats play a critical role in research because they provide a biological model that can be used for evaluating the affectation of diseases and injuries, and for the evaluation of the effectiveness of new drugs and treatments. The analysis of locomotion in laboratory rats facilitates the understanding of motor defects in many diseases, as well as the damage and recovery after peripheral and central nervous system injuries. However, locomotion analysis of rats remains a great challenge due to the necessity of labor intensive manual annotations of video data required to obtain quantitative measurements of the kinematics of the rodent extremities. In this work, we present a method that is based on the use of a bio-inspired algorithm that fits a kinematic model of the hind limbs of rats to binary images corresponding to the segmented marker of images corresponding to the rat's gait. The bio-inspired algorithm combines a genetic algorithm for a group of the optimization variables with a local search for a second group of the optimization variables. RESULTS: Our results indicate the feasibility of employing the proposed approach for the automatic annotation and analysis of the locomotion patterns of the posterior extremities of laboratory rats. CONCLUSIONS: The adjustment of the hind limb kinematic model to markers of the video frames corresponding to rat's gait sequences could then be used to analyze the motion patterns during the steps, which, in turn, can be useful for performing quantitative evaluations of the effect of lesions and treatments on rats models.


Subject(s)
Algorithms , Computational Biology , Hindlimb/physiology , Locomotion , Animals , Biomechanical Phenomena , Gait/physiology , Hindlimb/physiopathology , Joints/physiology , Motion , Rats , Software , Video Recording
11.
Physiol Rep ; 5(18)2017 Sep.
Article in English | MEDLINE | ID: mdl-28963128

ABSTRACT

In brain cortex-ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections of serotonin or glutamic acid effects were made to study their influence in FL or FS During FS, HeMR amplitude in extensor and bifunctional motoneurons increased prior to or during the respective electroneurogram (ENG). In soleus (SOL) motoneurons were reduced during the scratch cycle (SC). AA in medial gastrocnemius (MG) Ia afferent individual fibers of L6-L7 dorsal roots did not occur during FS Flexor digitorum longus (FDL) and MG motoneurons fired with doublets during the FS bursting activity, motoneuron membrane potential from some posterior biceps (PB) motoneurons exhibits a depolarization in relation to the PB (ENG). It changed to a locomotor drive potential in relation to one of the double ENG, PB bursts. In FDL and semitendinosus (ST) motoneurons, the membrane potential was depolarized during FS, but it did not change during FL Glutamic acid injected in the L3-L4 spinal cord segment favored the transition from FS to FL During FL, glutamic acid produces a duration increase of extensors ENGs. Serotonin increases the ENG amplitude in extensor motoneurons, as well as the duration of scratching episodes. It did not change the SC duration. Segregation and motoneurons excitability could be regulated by the rhythmic generator and the pattern generator of the central pattern generator.


Subject(s)
Evoked Potentials, Motor , Locomotion , Motor Neurons/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Animals , Cats , Cerebral Decortication , Ear Auricle/innervation , Ear Auricle/physiology , Female , Glutamic Acid/pharmacology , Lower Extremity/innervation , Lower Extremity/physiology , Male , Motor Cortex/physiology , Motor Neurons/drug effects , Muscle, Skeletal/innervation , Pyramidal Tracts/drug effects , Reflex, Monosynaptic , Serotonin/pharmacology
12.
Neuroscience ; 358: 37-48, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28663091

ABSTRACT

The current decerebration procedures discard the role of the thalamus in the motor control and decortication only rules out the brain cortex part, leaving a gap between the brain cortex and the subthalamic motor regions. In here we define a new preparation denominated Brain Cortex-Ablated Cat (BCAC), in which the frontal and parietal brain cortices as well as the central white matter beneath them were removed, this decerebration process may be considered as suprathalamic, since the thalamus remained intact. To characterize this preparation cat hindlimb electromyograms (EMG), kinematics and cutaneous reflexes (CR) produced by electrical stimulation of sural (SU) or saphenous (SAPH) nerves were analyzed during locomotion in intact and in BCAC. In cortex-ablated cats compared to intact cats, the hindlimb EMG amplitude was increased in the flexors, whereas in most extensors the amplitude was decreased. Bifunctional muscle EMGs presented complex and speed-dependent amplitude changes. In intact cats CR produced an inhibition of extensors, as well as excitation and inhibition of flexors, and a complex pattern of withdrawal responses in bifunctional muscles. The same stimuli applied to BCAC produced no detectable responses, but in some cats cutaneous reflexes produced by electrical stimulation of saphenous nerve reappeared when the locomotion speed increased. In BCAC, EMG and kinematic changes, as well as the absence of CR, imply that for this cat preparation there is a partial compensation due to the subcortical locomotor apparatus generating close to normal locomotion.


Subject(s)
Cerebral Cortex/physiology , Cerebral Decortication , Evoked Potentials, Motor/physiology , Locomotion/physiology , Reflex/physiology , Animals , Biomechanical Phenomena , Cats , Electromyography , Muscle, Skeletal/physiology , Torso/innervation
13.
J Vet Med ; 2016: 9561968, 2016.
Article in English | MEDLINE | ID: mdl-27006979

ABSTRACT

We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats.

14.
J Neurosurg ; 123(1): 270-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25679274

ABSTRACT

OBJECT: Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. METHODS: After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. RESULTS: At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. CONCLUSIONS: Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.


Subject(s)
Locomotion/drug effects , Muscle, Skeletal/innervation , Nerve Regeneration/physiology , Progesterone/pharmacology , Recovery of Function/drug effects , Sciatic Nerve/injuries , Tibial Nerve/physiology , Animals , Chitosan , Electromyography , Locomotion/physiology , Male , Models, Animal , Nerve Regeneration/drug effects , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Progesterone/administration & dosage , Rats , Rats, Wistar , Recovery of Function/physiology , Sciatic Nerve/physiology , Sciatic Nerve/surgery , Silicones , Tibial Nerve/drug effects
15.
Brain Res Bull ; 74(1-3): 113-8, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17683796

ABSTRACT

Glioma cell line C6, transfected with tyrosine hydroxylase (TH) cDNA under the control of the glial fibrillary acid protein promoter (C6-THA cells), elicited a reduction in the apomorphine-induced turning behavior when they are implanted in Parkinson's disease models. Nevertheless, dopamine (Da) release has not been explicitly demonstrated nor has a possible mechanism of release been implicated. In this study, the in vitro Da release by C6 and C6-THA cells after chemical stimulation with KCl or glutamate was quantified using HPLC. Modifications in intracellular calcium levels in response to KCl stimulation and participation of Da receptor-mediated feedback in calcium regulation were also studied using FLUO 3 as a calcium concentration indicator. C6-THA cells release dopamine in basal conditions, and increase its release after KCl or glutamic acid stimulation. In a fraction of C6 and C6-THA cells, a transient intracellular calcium increase was observed after KCl stimulation, but C6-THA cells demonstrated a faster rate of calcium removal. C6 cells express mRNA from all five subtypes of Da receptors as demonstrated by real time PCR. D1 receptors were most abundant in C6 cells and its expression was further increased in C6-THA cells. Blocking D1-like receptors in C6-THA cells with the specific antagonist drug SCH-23390 induced a decrease in intracellular calcium removal rate, resembling non-manipulated C6 cells' calcium clearance. Da release by C6-THA cells could be related to calcium dependent mechanisms. Furthermore, production of Da by C6-THA cells seems to upregulate the expression of D1 receptors' mRNA.


Subject(s)
Calcium/metabolism , Dopamine/metabolism , Intracellular Space/metabolism , Tyrosine 3-Monooxygenase/metabolism , Analysis of Variance , Animals , Benzazepines/pharmacology , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Dopamine Antagonists/pharmacology , Glioma/pathology , Glutamic Acid/pharmacology , Intracellular Space/drug effects , Mice , Potassium Chloride/pharmacology , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction/methods , Statistics, Nonparametric , Transfection/methods , Tyrosine 3-Monooxygenase/genetics
16.
Vet J ; 173(2): 428-36, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16459111

ABSTRACT

Pig neural cells express glycoproteins with sialylated N-linked oligosaccharide chains (SNOC) which are used by the porcine rubulavirus (PoRv) as receptors. Pig neuronal or glial cell cultures were employed to investigate (a) whether PoRv infects such cells using a molecule expressing SNOC, and (b) the role of viral envelope glycoproteins in establishing the infection. Enriched neuronal or glial cell cultures were exposed to PoRv and infection was detected immunocytochemically. Neuronal cultures prepared from neonatal pigs were treated enzymatically to eliminate sialic acid or N-linked oligosaccharide chains. Primary neural cultures were exposed to anti-HN or anti-F preincubated with PoRv to study the role of the viral glycoproteins. In enriched cultures, PoRv infected neurons and glial cells, and sialic acid expressed in N-linked oligosaccharide chains appeared to play a central role in infection. It was concluded that HN and F viral glycoproteins are required to infect neurons and glial cells.


Subject(s)
Neuroglia/virology , Neurons/virology , Rubulavirus Infections/veterinary , Rubulavirus/physiology , Sialoglycoproteins/metabolism , Animals , Brain/cytology , Cells, Cultured , Neuraminidase/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neurons/cytology , Neurons/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Receptors, Virus/metabolism , Rubulavirus Infections/virology , Swine , Swine Diseases/virology , Viral Core Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...